Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1060246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793925

RESUMO

Introduction: Intercropping cereals with legumes can intensify rainfed cereal monocropping for improved household food and nutritional security. However, there is scant literature confirming the associated nutritional benefits. Methodology: A systematic review and meta-analysis of nutritional water productivity (NWP) and nutrient contribution (NC) of selected cereal-legume intercrop systems was conducted through literature searches in Scopus, Web of Science and ScienceDirect databases. After the assessment, only nine articles written in English that were field experiments comprising grain cereal and legume intercrop systems were retained. Using the R statistical software (version 3.6.0), paired t-tests were used to determine if differences existed between the intercrop system and the corresponding cereal monocrop for yield (Y), water productivity (WP), NC, and NWP. Results: The intercropped cereal or legume yield was 10 to 35% lower than that for the corresponding monocrop system. In most instances, intercropping cereals with legumes improved NY, NWP, and NC due to their added nutrients. Substantial improvements were observed for calcium (Ca), where NY, NWP, and NC improved by 658, 82, and 256%, respectively. Discussion: Results showed that cereal-legume intercrop systems could improve nutrient yield in water-limited environments. Promoting cereal- legume intercrops that feature nutrient-dense legume component crops could contribute toward addressing the SDGs of Zero Hunger (SDG 3), Good Health and Well-3 (SDG 2) and Responsible consumption and production (SDG 12).

2.
Glob Food Sec ; 282021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39036390

RESUMO

Current food production and consumption practices have had negative impacts on the environment and are central to global health concerns. Using a mixed-methods review, we examined the nutritional and environmental impacts of our global food systems and addressed the apparent decrease in food sources and crop diversity, and its implication on sustainable and healthy diets. Moreover, we explored the merits of weighing the use of natural capital and agricultural inputs against the output generated in terms of nutrient density. Transforming our food systems to safeguard planetary health will require a shift towards sufficient production of nutrient dense crops that are environmentally sustainable. Such a transformation largely depends on valuing crops for their natural nutrient density and matching them to suitable environments.

3.
Front Nutr ; 7: 601496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363196

RESUMO

Rapid population growth, climate change, intensive monoculture farming, and resource depletion are among the challenges that threaten the increasingly vulnerable global agri-food system. Heavy reliance on a few major crops is also linked to a monotonous diet, poor dietary habits, and micronutrient deficiencies, which are often associated with diet-related diseases. Diversification-of both agricultural production systems and diet-is a practical and sustainable approach to address these challenges and to improve global food and nutritional security. This strategy is aligned with the recommendations from the EAT-Lancet report, which highlighted the urgent need for increased consumption of plant-based foods to sustain population and planetary health. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized African legume, has the potential to contribute to improved food and nutrition security, while providing solutions for environmental sustainability and equity in food availability and affordability. This paper discusses the potential role of Bambara groundnut in diversifying agri-food systems and contributing to enhanced dietary and planetary sustainability, with emphasis on areas that span the value chain: from genetics, agroecology, nutrition, processing, and utilization, through to its socioeconomic potential. Bambara groundnut is a sustainable, low-cost source of complex carbohydrates, plant-based protein, unsaturated fatty acids, and essential minerals (magnesium, iron, zinc, and potassium), especially for those living in arid and semi-arid regions. As a legume, Bambara groundnut fixes atmospheric nitrogen to improve soil fertility. It is resilient to adverse environmental conditions and can yield on poor soil. Despite its impressive nutritional and agroecological profile, the potential of Bambara groundnut in improving the global food system is undermined by several factors, including resource limitation, knowledge gap, social stigma, and lack of policy incentives. Multiple research efforts to address these hurdles have led to a more promising outlook for Bambara groundnut; however, there is an urgent need to continue research to realize its full potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...