Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Innov ; 30(1): 126-129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35658779

RESUMO

Need: Bone resection using customized 3D-printed guides can improve accuracy, but the technique is still associated with clinically significant errors.Technical solution: We developed an inexpensive optical feedback system (OFS) that compares intraoperative 2D camera images to the pre-operative plan, and accurately depicts the surgeon's guide placement prior to cutting, reducing the errors in resection.Proof of concept: We simulated wide resections of a bone sarcoma on 24 cadaver femurs using 3 cutting guide types. Guide placement was measured using the OFS and compared to CT-scans showing the actual guide position. We carried out a second, controlled study on 20 sawbones, comparing the accuracy of the final bone cuts with and without the surgeon actively using the OFS to adjust the guide position before cutting.Results: For cadavers, in 2 of 3 planes, the position of the jig recorded by the OFS closely matched its actual position, with an accuracy of .87° ± .65°(r = .94) and 1.2° ± 1.3°(r = .81) in the transverse and sagittal planes, respectively. In the second study, OFS increased accuracy of the final cut about the transverse and sagittal planes, respectively by 53.1% (P = .011)/54.7% (P = .04) and 33% (P = .051)/38% (P = .042) in terms of rotation and translation.Next steps: Developing the OFS as a mobile application to reduce the processing time and improve accessibility in the operating room.Conclusion: The OFS could accurately depict the guide placement on the bone and significantly improve the surgical accuracy of 3D printed jigs.


Assuntos
Neoplasias Ósseas , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Retroalimentação , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia
2.
J Orthop ; 32: 60-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601210

RESUMO

Background: Accurate reproduction of a preoperative plan is critical in wide resection of bone sarcomas. Recent advances in computer navigation and 3D-custom jigs have increased resection accuracy, although with certain practical drawbacks. Methods: We developed a novel "projector method" that projects the preoperative osteotomy lines onto the bone. A sawbone study was conducted to evaluate accuracy in reproducing preoperative resection plans. An additional cadaver experiment was conducted to evaluate feasibility in a more realistic operating room setting. Results: Based on the results of experiments conducted on sawbones, the proposed light projector method was more accurate at depicting desired osteotomy lines than a traditional manual method, reducing the corner deviation from 2.53 mm to 0.35 mm, angular deviation from 2.10° to 0.31°, and point deviation from 4.66 mm to 0.48 mm (p < 0.001). Results of the cadaver experiment were consistent with those of sawbone experiments. Conclusions: The new projector method can accurately assist surgeons in visualizing the preoperative plan of osteotomy lines accurately in surgery.

3.
Orthop Res Rev ; 14: 101-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422661

RESUMO

Introduction: Computer navigation and customized 3D-printed jigs improve accuracy during bone tumor resection, but such technologies can be bulky, costly, and require intraoperative radiation, or long lead time to be ready in OR. Methods: We developed a method utilizing a compact, inexpensive, non-X-ray based 3D surface light scanner to provide a visual aid that helps surgeons accurately draw osteotomy lines on the surface of exposed bone to reproduce a well-defined preoperative bone resection plan. We tested the accuracy of the method on 18 sawbones using a distal femur hemimetaphyseal resection model and compared it with a traditional, freehand method. Results: The method significantly reduces the positional error from 2.53 (±1.13) mm to 1.04 (±0.43) mm (p<0.001), and angular error of the front angle from 2.10° (±0.83°) to 0.80° (±0.66°) (p=0.001). The method also reduces the mean maximum deviation of the bone resection, with respect to the preoperative path, from 3.75mm to 2.69mm (p=0.003). However, no increased accuracy was observed at the back side of the bone surface where this method would not be expected to provide information. Discussion: In summary, we developed a novel 3D-LAD navigation technology. From the experimental study, we demonstrated that the method can improve the ability of surgeons to accurately draw the preoperative osteotomy lines and perform resection of a primary bone sarcoma, with comparison to traditional methods, using 18 sawbones.

4.
J Orthop Res ; 40(11): 2522-2536, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35245391

RESUMO

We developed a novel method using a combined light-registration/light-projection system along with an off-the-shelf, instant-assembly modular jig construct that could help surgeons improve bone resection accuracy during sarcoma surgery without many of the associated drawbacks of 3D printed custom jigs or computer navigation. In the novel method, the surgeon uses a light projection system to precisely align the assembled modular jig construct on the bone. In a distal femur resection model, 36 sawbones were evenly divided into 3 groups: manual-resection (MR), conventional 3D-printed custom jig resection (3DCJ), and the novel projector/modular jig (PMJ) resection. In addition to sawbones, a single cadaver experiment was also conducted to confirm feasibility of the PMJ method in a realistic operative setting. The PMJ method improved resection accuracy when compared to MR and 3DCJ, respectively: 0.98 mm versus 7.48 mm (p < 0.001) and 3.72 mm (p < 0.001) in mean corner position error; 1.66 mm versus 9.70 mm (p < 0.001) and 4.32 mm (p = 0.060) in mean maximum deviation error; 0.79°-4.78° (p < 0.001) and 1.26° (p > 0.999) in mean depth angle error. The PMJ method reduced the mean front angle error from 1.72° to 1.07° (p = 0.507) when compared to MR but was slightly worse compared to 0.61° (p = 0.013) in 3DCJ. The PMJ method never showed an error greater than 3 mm, while the maximum error of other two control groups were almost 14 mm. Similar accuracy was found with the PMJ method on the cadaver. A novel method using a light projector with modular jigs can achieve high levels of bone resection accuracy, but without many of the associated drawbacks of 3D printed jigs or computer navigation technology.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Cirurgia Assistida por Computador , Neoplasias Ósseas/cirurgia , Cadáver , Humanos , Cirurgia Assistida por Computador/métodos
5.
J Orthop Res ; 40(10): 2340-2349, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35119122

RESUMO

Accurate bone registration is critical for computer navigation and robotic surgery. Existing registration systems are expensive, cumbersome, limited in accuracy and/or require intraoperative radiation. We recently reported a novel method of registration utilizing an inexpensive, compact, and X-ray-free structured-light 3D scanner. However, this technique is not always practical in a real surgical setting where soft tissue and blood can obstruct the continuous line-of-sight required for structured-light technology. We sought to remedy these limitations using a novel technique using rapid-setting impression molding to capture bone surface features and scan the undersurface of the mold with a structured-light scanner. The photonegative of this mold is compared to the preoperative computed tomography (CT)-scan to register the bone. A registration accuracy study was conducted on 36 CT-scanned femur sawbones, simulating typical exposure in hip/knee arthroplasty and bone tumor surgery. A cadaver experiment was also conducted to evaluate the feasibility of using the impression molding in a more realistic operating room setting. The registration accuracy of the proposed technique was 0.50 ± 0.19 mm. This was close to the reported accuracy of 0.43 ± 0.18 mm using a structured-light scanner without impression molding (p = 0.085). In comparison, historical values for "paired-point" and intraoperative CT image-based registration methods currently used in modern robotic/computer-navigation systems were 0.68 ± 0.14 mm (p = 0.004) and 0.86 ± 0.38 mm, respectively. The registration accuracy of the cadaver experiment was consistent with that of sawbone experiments. Although future studies are needed to extend to human subjects, this study shows that the impression molding method can produce comparable or better registration accuracy than the existing techniques.


Assuntos
Robótica , Cirurgia Assistida por Computador , Cadáver , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos
6.
Orthopedics ; 45(3): 169-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35201939

RESUMO

3D-printed guides, which have recently been introduced in orthopedic oncology, improve resection accuracy compared with traditional bone resection methods, but there are inaccuracies associated with them. These inaccuracies could lead to disastrous outcomes such as positive tumor resection margins. In this Sawbone study, we sought to quantitatively investigate the margin of error for various jig types and to determine a "safety margin" that could serve as a guide for surgeons and jig engineers in creating 3D-printed jigs that would reduce the risk of potential disastrous results such as positive margins. Various 3D-printed jigs were used to simulate wide resection of a distal femoral bone sarcoma on Sawbone specimens by 10 individuals with no specific prior expertise in cutting guides. We developed a mathematical model using kinematic theory. We defined a safety margin as the amount of change in the osteotomy lines that must be incorporated into the jig design to ensure that the surgeon is at least 98% likely not to have a positive tumor margin. Experiments were conducted to determine the mean deviation experienced in placing cutting guides on the bones. The mean deviation for the four types of cutting guides ranged from 2.86 mm to 6.54 mm. We determined that a jig design should have a safety margin of 4.8 mm for standard guides and 8.65 mm for gusset guides to minimize the possibility of cutting into the tumor as a result of human error in guide placement. Further studies involving cadavers and patients are warranted. [Orthopedics. 2022;45(3):169-173.].


Assuntos
Neoplasias Ósseas , Sarcoma , Neoplasias Ósseas/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Margens de Excisão , Osteotomia/métodos , Impressão Tridimensional , Sarcoma/cirurgia
7.
Bioengineering (Basel) ; 8(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940352

RESUMO

BACKGROUND: Currently used synthetic bone graft substitutes (BGS) are either too weak to bear the principal load or if metallic, they can support loading, but can lead to stress shielding and are unable to integrate fully. In this study, we developed biocompatible, 3D printed scaffolds derived from µCT images of the bone that can overcome these issues and support the growth of osteoblasts. METHODS: Cylindrical scaffolds were fabricated with acrylonitrile butadiene styrene (ABS) and Stratasys® MED 610 (MED610) materials. The 3D-printed scaffolds were seeded with Mus musculus calvaria cells (MC3T3). After the cells attained confluence, osteogenesis was induced with and without the addition of calcitonin receptor fragment peptide (CRFP) and the bone matrix production was analyzed. Mechanical compression testing was carried out to measure compressive strength, stiffness, and elastic modulus. RESULTS: For the ABS scaffolds, there was a 9.8% increase in compressive strength (p < 0.05) in the scaffolds with no pre-coating and the treatment with CRFP, compared to non-treated scaffolds. Similarly, MED610 scaffolds treated with CRFP showed an 11.9% (polylysine pre-coating) and a 20% (no pre-coating) increase (p < 0.01) in compressive strength compared to non-treated scaffolds. CONCLUSIONS: MED610 scaffolds are excellent BGS as they support osteoblast growth and show enhanced bone growth with enhanced compressive strength when augmented with CRFP.

8.
Methods Protoc ; 4(4)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34698258

RESUMO

Gout is an inflammatory arthritis, which causes intense, acute pain due to the buildup of uric acid crystals in synovial fluid. The gold standard for gout diagnosis consists of synovial fluid analysis by polarized light microscopy, which is costly, time-intensive, and technique-dependent, therefore meriting a more efficient, inexpensive, and accessible method for diagnosis. We previously developed and validated a novel colorimetric gout detection method and device based on the reduction of silver nitrate by uric acid; here, we clinically validated our method and device using arthroscopically obtained synovial fluid samples from gout patients. We successfully identified uric acid crystals in clinical samples via our colorimetric method, visualized uric acid crystals in synovial fluid via handheld microscopy, and determined that silver nitrate stain did not interfere with the microscopic visualization of uric acid crystals necessary for diagnosis. We also developed and validated a method of processing turbid clinical samples for use in our device to prevent the obscuration of uric acid crystals by suspended material. Our method and device will clinically facilitate the immediate colorimetric diagnosis of gout and the subsequent bedside visualization of uric acid crystals in both ideal and turbid synovial fluid samples, allowing for a point-of-care diagnosis of gout.

9.
J Orthop ; 23: 227-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613005

RESUMO

INTRODUCTION: Computer- and robotic-assisted technologies have recently been introduced into orthopedic surgery to improve accuracy. Each requires intraoperative "bone registration," but existing methods are time consuming, often inaccurate, and/or require bulky and costly equipment that produces substantial radiation. METHODS: We developed a novel method of bone registration using a compact 3D structured light surface scanner that can scan thousands of points simultaneously without any ionizing radiation.Visible light is projected in a specific pattern onto a 3 × 3 cm2 area of exposed bone, which deforms the pattern in a way determined by the local bone geometry. A quantitative analysis reconstructs this local geometry and compares it to the preoperative imaging, thereby effecting rapid bone registration.A registration accuracy study using our novel method was conducted on 24 CT-scanned femur Sawbones®. We simulated exposures typically seen during knee/hip arthroplasty and common bone tumor resections. The registration accuracy of our technique was quantified by measuring the discrepancy of known points (i.e., pre-drilled holes) on the bone. RESULTS: Our technique demonstrated a registration accuracy of 0.44 ± 0.22 mm. This compared favorably with literature-reported values of 0.68 ± 0.14 mm (p-value = 0.001) for the paired-point technique13 and 0.86 ± 0.38 mm for the intraoperative CT based techniques 14 (not enough reported data to calculate p-value). CONCLUSION: We have developed a novel method of bone registration for computer and robotic-assisted surgery using 3D surface scanning technology that is rapid, compact, and radiation-free. We have demonstrated increased accuracy compared to existing methods (using historical controls).

10.
Cyborg Bionic Syst ; 2021: 9816913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36285133

RESUMO

Intraoperative confirmation of negative resection margins is an essential component of soft tissue sarcoma surgery. Frozen section examination of samples from the resection bed after excision of sarcomas is the gold standard for intraoperative assessment of margin status. However, it takes time to complete histologic examination of these samples, and the technique does not provide real-time diagnosis in the operating room (OR), which delays completion of the operation. This paper presents a study and development of sensing technology using Raman spectroscopy that could be used for detection and classification of the tumor after resection with negative sarcoma margins in real time. We acquired Raman spectra from samples of sarcoma and surrounding benign muscle, fat, and dermis during surgery and developed (i) a quantitative method (QM) and (ii) a machine learning method (MLM) to assess the spectral patterns and determine if they could accurately identify these tissue types when compared to findings in adjacent H&E-stained frozen sections. High classification accuracy (>85%) was achieved with both methods, indicating that these four types of tissue can be identified using the analytical methodology. A hand-held Raman probe could be employed to further develop the methodology to obtain spectra in the OR to provide real-time in vivo capability for the assessment of sarcoma resection margin status.

11.
Diagnostics (Basel) ; 9(4)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652657

RESUMO

Gout is a form of arthritis characterized by buildup of uric acid in synovial fluid, which causes severe swelling and can harm joints, tendons, and other tissues. It affects approximately 4% of the United States population, or approximately 8.3 million people nationwide and is therefore a topic of epidemiologic consideration due to its prevalence. Gout is typically diagnosed via polarized microscopy of arthroscopically-aspirated synovial fluid, which is a costly, time-consuming, labor-intensive, and technically complex procedure, warranting a simpler and less complex method for diagnosis. Here, we propose and validate a colorimetric method which is based on the ability of uric acid to reduce silver nitrate. We also assessed how the colorimetric change can be accelerated by changing the concentration of silver nitrate or adding different silver catalysts, as well as develop a matrix bed for improved handling and ease of use. When translated to the clinic, this diagnostic method for gout will have the potential to increase diagnostic efficiency and accelerate patient care at the bedside.

12.
J Orthop Surg Res ; 13(1): 37, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29458387

RESUMO

CORRECTION TO: J ORTHOP SURG RES (2017) 12: 195. HTTPS://DOI.ORG/10.1186/S13018-017-0700-2: In the original publication of this article [1] there was an error in one of the author names. In this publication the correct and incorrect name are indicated.

13.
J Orthop Surg Res ; 12(1): 195, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273059

RESUMO

BACKGROUND: One of the major challenges in orthopedics is to develop implants that overcome current postoperative problems such as osteointegration, proper load bearing, and stress shielding. Current implant techniques such as allografts or endoprostheses never reach full bone integration, and the risk of fracture due to stress shielding is a major concern. To overcome this, a novel technique of reverse engineering to create artificial scaffolds was designed and tested. The purpose of the study is to create a new generation of implants that are both biocompatible and biomimetic. METHODS: 3D-printed scaffolds based on physiological trabecular bone patterning were printed. MC3T3 cells were cultured on these scaffolds in osteogenic media, with and without the addition of Calcitonin Receptor Fragment Peptide (CRFP) in order to assess bone formation on the surfaces of the scaffolds. Integrity of these cell-seeded bone-coated scaffolds was tested for their mechanical strength. RESULTS: The results show that cellular proliferation and bone matrix formation are both supported by our 3D-printed scaffolds. The mechanical strength of the scaffolds was enhanced by trabecular patterning in the order of 20% for compression strength and 60% for compressive modulus. Furthermore, cell-seeded trabecular scaffolds modulus increased fourfold when treated with CRFP. CONCLUSION: Upon mineralization, the cell-seeded trabecular implants treated with osteo-inductive agents and pretreated with CRFP showed a significant increase in the compressive modulus. This work will lead to creating 3D structures that can be used in the replacement of not only bone segments, but entire bones.


Assuntos
Transplante Ósseo/métodos , Proteína Semelhante a Receptor de Calcitonina/administração & dosagem , Vértebras Lombares/transplante , Impressão Tridimensional , Alicerces Teciduais , Células 3T3 , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/administração & dosagem , Fenômenos Biomecânicos/fisiologia , Proteína Semelhante a Receptor de Calcitonina/genética , Vértebras Lombares/citologia , Vértebras Lombares/fisiologia , Masculino , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...