Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 19(12): 13114-13136, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36654038

RESUMO

Epidemic models have been broadly used to comprehend the dynamic behaviour of emerging and re-emerging infectious diseases, predict future trends, and assess intervention strategies. The symptomatic and asymptomatic features and environmental factors for Lassa fever (LF) transmission illustrate the need for sophisticated epidemic models to capture more vital dynamics and forecast trends of LF outbreaks within countries or sub-regions on various geographic scales. This study proposes a dynamic model to examine the transmission of LF infection, a deadly disease transmitted mainly by rodents through environment. We extend prior LF models by including an infectious stage to mild and severe as well as incorporating environmental contributions from infected humans and rodents. For model calibration and prediction, we show that the model fits well with the LF scenario in Nigeria and yields remarkable prediction results. Rigorous mathematical computation divulges that the model comprises two equilibria. That is disease-free equilibrium, which is locally-asymptotically stable (LAS) when the basic reproduction number, $ {\mathcal{R}}_{0} $, is $ < 1 $; and endemic equilibrium, which is globally-asymptotically stable (GAS) when $ {\mathcal{R}}_{0} $ is $ > 1 $. We use time-dependent control strategy by employing Pontryagin's Maximum Principle to derive conditions for optimal LF control. Furthermore, a partial rank correlation coefficient is adopted for the sensitivity analysis to obtain the model's top rank parameters requiring precise attention for efficacious LF prevention and control.


Assuntos
Epidemias , Febre Lassa , Animais , Humanos , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Surtos de Doenças , Número Básico de Reprodução , Nigéria/epidemiologia , Roedores
2.
Infect Dis Poverty ; 9(1): 96, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678037

RESUMO

BACKGROUND: Since the first case of coronavirus disease 2019 (COVID-19) in Africa was detected on February 14, 2020, the cumulative confirmations reached 15 207 including 831 deaths by April 13, 2020. Africa has been described as one of the most vulnerable region with the COVID-19 infection during the initial phase of the outbreak, due to the fact that Africa is a great commercial partner of China and some other EU and American countries. Which result in large volume of travels by traders to the region more frequently and causing African countries face even bigger health threat during the COVID-19 pandemic. Furthermore, the fact that the control and management of COVID-19 pandemic rely heavily on a country's health care system, and on average Africa has poor health care system which make it more vulnerable indicating a need for timely intervention to curtail the spread. In this paper, we estimate the exponential growth rate and basic reproduction number (R0) of COVID-19 in Africa to show the potential of the virus to spread, and reveal the importance of sustaining stringent health measures to control the disease in Africa. METHODS: We analyzed the initial phase of the epidemic of COVID-19 in Africa between 1 March and 13 April 2020, by using the simple exponential growth model. We examined the publicly available materials published by the WHO situation report to show the potential of COVID-19 to spread without sustaining strict health measures. The Poisson likelihood framework is adopted for data fitting and parameter estimation. We modelled the distribution of COVID-19 generation interval (GI) as Gamma distributions with a mean of 4.7 days and standard deviation of 2.9 days estimated from previous work, and compute the basic reproduction number. RESULTS: We estimated the exponential growth rate as 0.22 per day (95% CI: 0.20-0.24), and the basic reproduction number, R0, as 2.37 (95% CI: 2.22-2.51) based on the assumption that the exponential growth starting from 1 March 2020. With an R0 at 2.37, we quantified the instantaneous transmissibility of the outbreak by the time-varying effective reproductive number to show the potential of COVID-19 to spread across African region. CONCLUSIONS: The initial growth of COVID-19 cases in Africa was rapid and showed large variations across countries. Our estimates should be useful in preparedness planning against further spread of the COVID-19 epidemic in Africa.


Assuntos
Número Básico de Reprodução , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , África/epidemiologia , COVID-19 , Infecções por Coronavirus/transmissão , Humanos , Funções Verossimilhança , Modelos Estatísticos , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2 , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA