Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hand Ther ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521687

RESUMO

BACKGROUND: Hand grip strength is an established indicator of individual health status and is used as a biomarker for predicting mortality, disability, and disease risks. GripAble hand grip dynamometer offers a modernized approach to measuring grip strength with its digital and high-accuracy measurement system. PURPOSE: This study aimed to (1) assess the interrater reliability of maximum grip strength (MGS) measurement and (2) establish GripAble's own gender-, age group- and hand-stratified normative MGS reference values of the adult UK population. STUDY DESIGN: Cross-sectional study design. METHODS: Interrater reliability among three raters assessing 30 participants across diverse age groups was measured using the intraclass correlation. In the second study, 11 investigators gathered MGS data from 907 participants across diverse age groups and gender. The average, standard deviation, minimum, median, maximum, and percentiles of MGS were computed for each gender, age group, and hand (L/R). The relationship between MGS and age was examined using quantile regression analysis. Additionally, generalized linear model regression analysis was conducted to explore the influence of participants' demographics (gender, hand [L/R], hand length, hand circumference, age, weight, and height) on MGS. RESULTS: MGS measurements between raters showed excellent agreement (ICC(2,1) = 0.991, 95% confidence interval [0.98, 1.0]). The MGS and age relationship follows a curvilinear pattern, reaching a peak median MGS values of up to 20 kg between 30 and 49 years for females and up to 35 kg between 30 and 59 years for males. Subsequently, MGS declined as age advanced. Gender and hand (L/R) emerged as the primary factors influencing MGS, followed by hand length, hand circumference, age, weight, and height. CONCLUSIONS: The presented normative MGS reference values can be used for interpreting MGS measurements obtained from adults in the United Kingdom using GripAble. This study, along with previous studies on GripAble devices, confirms GripAble as a reliable and valid tool for measuring MGS.

2.
IEEE Trans Haptics ; 16(4): 609-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167040

RESUMO

During daily activities, humans routinely manipulate objects bimanually or with the help of a partner. This work explored how bimanual and dyadic coordination modes are impacted by the object's stiffness, which conditions inter-limb haptic communication. For this, we recruited 20 healthy participants who performed a virtual task inspired by object handling, where we looked at the initiation of force exchange and its continued maintenance while tracking. Our findings suggest that while individuals and dyads displayed different motor behaviours, which may stem from the dyad members' need to estimate their partner's actions, they exhibited similar tracking accuracy. For both coordination modes, increased stiffness resulted in better tracking accuracy and more correlated motions, but required a larger effort through increased average torque. These results suggest that stiffness may be a key consideration in applications such as rehabilitation, where bimanual or external physical assistance is often provided.


Assuntos
Percepção do Tato , Humanos , Relações Interpessoais , Torque
3.
J Rehabil Assist Technol Eng ; 9: 20556683221078455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251685

RESUMO

INTRODUCTION: Grip strength is a reliable biomarker of overall health and physiological well-being. It is widely used in clinical practice as an outcome measure. This paper demonstrates the measurement characteristics of GripAble, a wireless mobile handgrip device that measures grip force both isometrically and elastically-resisted for assessment and training of hand function. METHODS: A series of bench tests were performed to evaluate GripAble's grip force measurement accuracy and sensitivity. Measurement robustness was evaluated through repeated drop tests interwoven with error verification test phases. RESULTS: GripAble's absolute measurement error at the central position was under 0.81 and 1.67 kg (95th percentiles; N = 47) when measuring elastically and isometrically, respectively, providing similar or better accuracy than the industry-standard Jamar device. Sensitivity was measured as 0.062 ± 0.015 kg (mean ± std; 95th percentiles: [0.036, 0.089] kg; N = 47), independent of the applied force. There was no significant performance degradation following impact from 30 drops from a height >1.5 m. CONCLUSION: GripAble is an accurate and reliable grip strength dynamometer. It is highly sensitive and robust, which in combination with other novel features (e.g. portability, telerehabilitation and digital data tracking) enable broad applicability in a range of clinical caseloads and environments.

4.
BMC Musculoskelet Disord ; 23(1): 80, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073887

RESUMO

INTRODUCTION: Maximum grip strength (MGS) is a reliable biomarker of overall health and physiological well-being. Therefore, an accurate and reliable measurement device is vital for ensuring the validity of the MGS assessment. This paper presents GripAble, a mobile hand grip device for the assessment of MGS. GripAble's performance was evaluated using an inter-instrument reliability test against the widely used Jamar PLUS+ dynamometer. METHODS: MGS data from sixty-three participants (N = 63, median (IQR) age = 29.0 (29.5) years, 33 M/30 F) from both hands using GripAble and Jamar PLUS+ were collected and compared. Intraclass correlation (ICC), regression, and Bland and Altman analysis were performed to evaluate the inter-instrument reliability and relationship in MGS measurements between GripAble and Jamar PLUS+ . RESULTS: GripAble demonstrates good-to-excellent inter-instrument reliability to the Jamar PLUS+ with ICC3,1 = 0.906 (95% CI [0.87-0.94]). GripAble's MGS measurement is equivalent to 69% (95% CI [0.67-0.71]%) of Jamar PLUS+'s measurement. There is a proportional difference in mean MGS between the two devices, with the difference in MGS between GripAble and Jamar PLUS+ increasing with MGS. CONCLUSION: The GripAble is a reliable tool for measuring grip strength. However, the MGS readings from GripAble and Jamar PLUS+ should not be interchanged for serial measurements of the same patient, nor be translated directly from one device to the other. A new normative MGS data using GripAble will be collected and accessed through the software for immediate comparison to age and gender-matched subpopulations.


Assuntos
Força da Mão , Mãos , Adulto , Testes Diagnósticos de Rotina , Humanos , Dinamômetro de Força Muscular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...