Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1843(7): 1259-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24637330

RESUMO

HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAK(-/-) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.


Assuntos
Autofagia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Sobrevivência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sinvastatina/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas/genética , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína X Associada a bcl-2/deficiência
2.
Br J Pharmacol ; 167(3): 548-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22551156

RESUMO

BACKGROUND AND PURPOSE: Acute silencing of caveolin-1 (Cav-1) modulates receptor-mediated contraction of airway smooth muscle. Moreover, COX-2- and 5-lipoxygenase (5-LO)-derived prostaglandin and leukotriene biosynthesis can influence smooth muscle reactivity. COX-2 half-life can be prolonged through association with Cav-1. We suggested that lack of Cav-1 modulated levels of COX-2 which in turn modulated tracheal contraction, when arachidonic acid signalling was disturbed by inhibition of COX-2. EXPERIMENTAL APPROACH: Using tracheal rings from Cav-1 knockout (KO) and wild-type mice (B6129SF2/J), we measured isometric contractions to methacholine and used PCR, immunoblotting and immunohistology to monitor expression of relevant proteins. KEY RESULTS: Tracheal rings from Cav-1 KO and wild-type mice exhibited similar responses, but the COX-2 inhibitor, indomethacin, increased responses of tracheal rings from Cav-1 KO mice to methacholine. The phospholipase A2 inhibitor, eicosatetraynoic acid, which inhibits formation of both COX-2 and 5-LO metabolites, had no effect on wild-type or Cav-1 KO tissues. Indomethacin-mediated hyperreactivity was ablated by the LTD4 receptor antagonist (montelukast) and 5-LO inhibitor (zileuton). The potentiating effect of indomethacin on Cav-1 KO responses to methacholine was blocked by epithelial denudation. Immunoprecipitation showed that COX-2 binds Cav-1 in wild-type lungs. Immunoblotting and qPCR revealed elevated levels of COX-2 and 5-LO protein, but not COX-1, in Cav-1 KO tracheas, a feature that was prevented by removal of the epithelium. CONCLUSION AND IMPLICATIONS: The indomethacin-induced hypercontractility observed in Cav-1 KO tracheas was linked to increased expression of COX-2 and 5-LO, which probably enhanced arachidonic acid shunting and generation of pro-contractile leukotrienes when COX-2 was inhibited.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Caveolina 1/genética , Ciclo-Oxigenase 2/metabolismo , Indometacina/farmacologia , Animais , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Araquidonato 5-Lipoxigenase/genética , Ácido Araquidônico/metabolismo , Hiper-Reatividade Brônquica/patologia , Broncoconstrição/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Imunoprecipitação , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 302(4): L420-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160308

RESUMO

Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.


Assuntos
Alquil e Aril Transferases/metabolismo , Apoptose , Autofagia , Brônquios/citologia , Farnesiltranstransferase/metabolismo , Miócitos de Músculo Liso/enzimologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Benzamidas/farmacologia , Benzotiazóis/farmacologia , Sobrevivência Celular , Células Cultivadas , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/genética , Humanos , Miócitos de Músculo Liso/fisiologia , Cultura Primária de Células , Transdução de Sinais , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Respir Res ; 12: 113, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864337

RESUMO

BACKGROUND: Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-ß1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFß1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects. METHODS: We used simvastatin (1-15 µM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 µM) and farnesyl transferase (FT; FTI-277, 10 µM) were used to determine whether GGT1 and FT contribute to TGFß1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 µM) or farnesylpyrophosphate (30 µM). RESULTS: Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFß1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFß1-induced signaling. Asthmatic fibroblasts exhibited greater TGFß1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin. CONCLUSIONS: We conclude that TGFß1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/metabolismo , Brônquios/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Asma/patologia , Brônquios/metabolismo , Brônquios/patologia , Estudos de Casos e Controles , Células Cultivadas , Relação Dose-Resposta a Droga , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas/metabolismo , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Metionina/análogos & derivados , Metionina/farmacologia , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Fatores de Tempo , Adulto Jovem
5.
PLoS One ; 6(1): e16523, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21304979

RESUMO

Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mesoderma/citologia , Ácido Mevalônico/farmacologia , Sistema Respiratório/citologia , Proteína Supressora de Tumor p53/fisiologia , Células Cultivadas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mesoderma/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Sinvastatina/farmacologia
6.
J Cell Mol Med ; 15(11): 2430-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21199324

RESUMO

Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-ß(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-ß(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-ß(1). The failure by TGF-ß(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-ß(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.


Assuntos
Caveolina 1/metabolismo , Contração Muscular , Miócitos de Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Actinas/biossíntese , Remodelação das Vias Aéreas , Animais , Asma/fisiopatologia , Proteínas de Ligação ao Cálcio , Cavéolas/metabolismo , Cavéolas/fisiologia , Caveolina 1/genética , Células Cultivadas , Cães , Fator de Iniciação 4E em Eucariotos/metabolismo , Cobaias , Humanos , Proteínas dos Microfilamentos , Células Musculares , Miócitos de Músculo Liso/fisiologia , Fenótipo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Calponinas
7.
Am J Respir Cell Mol Biol ; 44(3): 394-403, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20463291

RESUMO

Smooth muscle cells promote fibroproliferative airway remodeling in asthma, and transforming growth factor ß1 (TGFß1) is a key inductive signal. Statins are widely used to treat hyperlipidemia. Growing evidence indicates they also exert a positive impact on lung health, but the underlying mechanisms are unclear. We assessed the effects of 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase inhibition with simvastatin on the fibrotic function of primary cultured human airway smooth muscle cells. Simvastatin blocked de novo cholesterol synthesis, but total myocyte cholesterol content was unaffected. Simvastatin also abrogated TGFß1-induced collagen I and fibronectin expression, and prevented collagen I secretion. The depletion of mevalonate cascade intermediates downstream from HMG-CoA underpinned the effects of simvastatin, because co-incubation with mevalonate, geranylgeranylpyrophosphate, or farnesylpyrophosphate prevented the inhibition of matrix protein expression. We also showed that human airway myocytes express both geranylgeranyl transferase 1 (GGT1) and farnesyltransferase (FT), and the inhibition of GGT1 (GGTI inhibitor-286, 10 µM), but not FT (FTI inhibitor-277, 10 µM), mirrored the suppressive effects of simvastatin on collagen I and fibronectin expression and collagen I secretion. Moreover, simvastatin and GGTI-286 both prevented TGFß1-induced membrane association of RhoA, a downstream target of GGT1. Our findings suggest that simvastatin and GGTI-286 inhibit synthesis and secretion of extracellular matrix proteins by human airway smooth muscle cells by suppressing GGT1-mediated posttranslational modification of signaling molecules such as RhoA. These findings reveal mechanisms related to evidence for the positive impact of statins on pulmonary health.


Assuntos
Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Ácido Mevalônico/metabolismo , Traqueia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Alquil e Aril Transferases/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Farnesiltranstransferase/metabolismo , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinvastatina/farmacologia
8.
J Cell Sci ; 123(Pt 18): 3061-70, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736308

RESUMO

The dystrophin-glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and beta-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with beta-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of beta-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence beta-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCbeta1 and G(alphaq), which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and beta-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.


Assuntos
Cálcio/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Distroglicanas/metabolismo , Músculo Liso/metabolismo , Animais , Caveolina 1/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/metabolismo , Cães , Distroglicanas/genética , Humanos , Células Musculares/metabolismo , Ligação Proteica
9.
Biochim Biophys Acta ; 1803(4): 452-67, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20045437

RESUMO

Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina Endopeptidases/metabolismo , Sinvastatina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Caspase 8/metabolismo , Caspase 9/metabolismo , Colesterol/metabolismo , Fibroblastos/efeitos dos fármacos , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/metabolismo , Mesoderma/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
10.
Biochim Biophys Acta ; 1793(3): 546-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19321129

RESUMO

Tumor necrosis factor alpha (TNF) is a cytokine that induces caspase-dependent (apoptotic) and caspase-independent (necrosis-like) cell death in different cells. We used the murine fibrosarcoma cell line model L929 and a stable L929 transfectant over-expressing a mutated dominant-negative form of BNIP3 lacking the C-terminal transmembrane (TM) domain (L929-DeltaTM-BNIP3) to test if TNF-induced cell death involved pro-apoptotic Bcl2 protein BNIP3. Treatment of cells with TNF in the absence of actinomycin D caused a rapid fall in the mitochondrial membrane potential (DeltaPsim) and a prompt increase in reactive oxygen species (ROS) production, which was significantly less pronounced in L929-DeltaTM-BNIP3. TNF did not cause the mitochondrial release of apoptosis inducing factor (AIF) and Endonuclease G (Endo-G) but provoked the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 at similar levels in both L929 and in L929-DeltaTM-BNIP3 cells. We observed TNF-associated increase in the expression of BNIP3 in L929 that was mediated by nitric oxide and significantly inhibited by nitric oxide synthase inhibitor N5-(methylamidino)-L-ornithine acetate. In L929, lysosomal swelling and activation were markedly increased as compared to L929-DeltaTM-BNIP3 and could be inhibited by treatment with inhibitors to vacuolar H+-ATPase and cathepsins -B/-L. Together, these data indicate that TNF-induced cell death involves BNIP3, ROS production, and activation of the lysosomal death pathway.


Assuntos
Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Animais , Caspase 9/metabolismo , Morte Celular , Células Cultivadas , Citocromos c/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Óxido Nítrico Sintase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 294(1): L57-68, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993586

RESUMO

Airway smooth muscle (ASM) cells may contribute to asthma pathogenesis through their capacity to switch between a synthetic/proliferative and a contractile phenotype. The multimeric dystrophin-glycoprotein complex (DGC) spans the sarcolemma, linking the actin cytoskeleton and extracellular matrix. The DGC is expressed in smooth muscle tissue, but its functional role is not fully established. We tested whether contractile phenotype maturation of human ASM is associated with accumulation of DGC proteins. We compared subconfluent, serum-fed cultures and confluent cultures subjected to serum deprivation, which express a contractile phenotype. Western blotting confirmed that beta-dystroglycan, beta-, delta-, and epsilon-sarcoglycan, and dystrophin abundance increased six- to eightfold in association with smooth muscle myosin heavy chain (smMHC) and calponin accumulation during 4-day serum deprivation. Immunocytochemistry showed that the accumulation of DGC subunits was specifically localized to a subset of cells that exhibit robust staining for smMHC. Laminin competing peptide (YIGSR, 1 microM) and phosphatidylinositol 3-kinase (PI3K) inhibitors (20 microM LY-294002 or 100 nM wortmannin) abrogated the accumulation of smMHC, calponin, and DGC proteins. These studies demonstrate that the accumulation of DGC is an integral feature for phenotype maturation of human ASM cells. This provides a strong rationale for future studies investigating the role of the DGC in ASM smooth muscle physiology in health and disease.


Assuntos
Distrofina/genética , Glicoproteínas/genética , Músculo Liso/fisiologia , Fenômenos Fisiológicos Respiratórios , Linhagem Celular , Senescência Celular , Distroglicanas/análise , Marcadores Genéticos , Humanos , Imuno-Histoquímica , Músculo Liso/citologia , Fenótipo , Subunidades Proteicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoglicanas/análise , Telomerase/análise
12.
Am J Physiol Lung Cell Mol Physiol ; 293(6): L1406-18, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17890325

RESUMO

Contractile responses of airway smooth muscle (ASM) determine airway resistance in health and disease. Caveolae microdomains in the plasma membrane are marked by caveolin proteins and are abundant in contractile smooth muscle in association with nanospaces involved in Ca(2+) homeostasis. Caveolin-1 can modulate localization and activity of signaling proteins, including trimeric G proteins, via a scaffolding domain. We investigated the role of caveolae in contraction and intracellular Ca(2+) ([Ca(2+)](i)) mobilization of ASM induced by the physiological muscarinic receptor agonist, acetylcholine (ACh). Human and canine ASM tissues and cells predominantly express caveolin-1. Muscarinic M(3) receptors (M(3)R) and Galpha(q/11) cofractionate with caveolin-1-rich membranes of ASM tissue. Caveolae disruption with beta-cyclodextrin in canine tracheal strips reduced sensitivity but not maximum isometric force induced by ACh. In fura-2-loaded canine and human ASM cells, exposure to methyl-beta-cyclodextrin (mbetaCD) reduced sensitivity but not maximum [Ca(2+)](i) induced by ACh. In contrast, both parameters were reduced for the partial muscarinic agonist, pilocarpine. Fluorescence microscopy revealed that mbetaCD disrupted the colocalization of caveolae-1 and M(3)R, but [N-methyl-(3)H]scopolamine receptor-binding assay revealed no effect on muscarinic receptor availability or affinity. To dissect the role of caveolin-1 in ACh-induced [Ca(2+)](i) flux, we disrupted its binding to signaling proteins using either a cell-permeable caveolin-1 scaffolding domain peptide mimetic or by small interfering RNA knockdown. Similar to the effects of mbetaCD, direct targeting of caveolin-1 reduced sensitivity to ACh, but maximum [Ca(2+)](i) mobilization was unaffected. These results indicate caveolae and caveolin-1 facilitate [Ca(2+)](i) mobilization leading to ASM contraction induced by submaximal concentrations of ACh.


Assuntos
Sinalização do Cálcio , Cavéolas/metabolismo , Espaço Intracelular/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptor Muscarínico M3/metabolismo , Sistema Respiratório/metabolismo , Acetilcolina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cavéolas/efeitos dos fármacos , Caveolina 1/química , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , Cães , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/ultraestrutura , N-Metilescopolamina/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/ultraestrutura , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Trítio/metabolismo , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...