Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(14): 16436-16441, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182419

RESUMO

Membranes are a critical technology for energy-efficient separation processes. The routine method of evaluating membrane performance is a permeation measurement. However, such measurements can be limited in terms of their utility: membrane microstructure is often poorly characterized; membranes or sealants leak; and conditions in the gas phase are poorly controlled and frequently far-removed from the conditions employed in the majority of real processes. Here, we demonstrate a new integrated approach to determine permeation rates, using two novel supported molten-salt membrane geometries. In both cases, the membranes comprise a solid support with laser-drilled pores, which are infiltrated with a highly CO2-selective molten carbonate salt. First, we fabricate an optically transparent single-crystal, single-pore model membrane by local laser drilling. By infiltrating the single pore with molten carbonate, monitoring the gas-liquid interface optically, and using image analysis on gas bubbles within the molten carbonate (because they change volume upon controlled changes in gas composition), we extract CO2 permeation rates with exceptional speed and precision. Additionally, in this arrangement, microstructural characterization is more straightforward and a sealant is not required, eliminating a major source of leakage. Furthermore, we demonstrate that the technique can be used to probe a previously unexplored driving force region, too low to access with conventional methods. Subsequently, we fabricate a leak-free tubular-supported molten-salt membrane with 1000 laser-drilled pores (infiltrated with molten carbonate) and employ a CO2-containing sweep gas to obtain permeation rates in a system that can be described with unprecedented precision. Together, the two approaches provide new ways to measure permeation rates with increased speed and at previously inaccesible conditions.

2.
J Am Chem Soc ; 140(13): 4736-4742, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553264

RESUMO

Solid metal oxides for carbon capture exhibit reduced adsorption capacity following high-temperature exposure, due to surface area reduction by sintering. Furthermore, only low-coordinate corner/edge sites on the thermodynamically stable (100) facet display favorable binding toward CO2, providing inherently low capacity. The (111) facet, however, exhibits a high concentration of low-coordinate sites. In this work, MgO(111) nanosheets displayed high capacity for CO2, as well as a ∼65% increase in capacity despite a ∼30% reduction in surface area following sintering (0.77 mmol g-1 @ 227 m2 g-1 vs 1.28 mmol g-1 @ 154 m2 g-1). These results, unique to MgO(111), suggest intrinsic differences in the effects of sintering on basic site retention. Spectroscopic and computational investigations provided a new structure-activity insight: the importance of high-temperature activation to unleash the capacity of the polar (111) facet of MgO. In summary, we present the first example of a faceted sorbent for carbon capture and challenge the assumption that sintering is necessarily a negative process; here we leverage high-temperature conditions for facet-dependent surface activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...