Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 20(11): 1519-1524, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446865

RESUMO

Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe0.96Co0.04)2As2. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.


Assuntos
Eletrônica , Supercondutividade , Anisotropia , Temperatura , Difração de Raios X
2.
J Phys Chem Lett ; 12(11): 2749-2755, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33705146

RESUMO

We study the effects of bismuth doping on the crystal structure and phase transitions in single crystals of the perovskite semiconductor methylammonium lead tribromide, MAPbBr3. By measuring the temperature-dependent specific heat capacity (Cp), we find that as the Bi doping increases, the phase transition assigned to the cubic to tetragonal phase boundary decreases in temperature. Furthermore, after doping we observe one phase transition between 135 and 155 K, in contrast to two transitions observed in the undoped single crystal. These results appear strikingly similar to previously reported effects of mechanical pressure on perovskite crystal structure. Using X-ray diffraction, we show that the lattice constant decreases as Bi is incorporated into the crystal, as predicted by density functional theory. We propose that bismuth substitutional doping on the lead site is dominant, resulting in BiPb+ centers that induce compressive chemical strain that alters the crystalline phase transitions.

3.
Rev Sci Instrum ; 91(2): 023902, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113413

RESUMO

We present the design and construction of an apparatus that measures the Seebeck coefficient of single crystals under in situ tunable strain at cryogenic temperatures. A home-built three piezostack apparatus applies uni-axial stress to a single crystalline sample and modulates anisotropic strain up to 0.7%. An alternating heater system and cernox sensor thermometry measure the Seebeck coefficient along the uniaxial stress direction. To demonstrate the efficacy of this apparatus, we applied uniaxial stress to detwin single crystals of BaFe2As2 in the orthorhombic phase. The obtained Seebeck coefficient anisotropy is in good agreement with previous measurements using a mechanical clamp.

4.
Sci Adv ; 5(8): eaav9771, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31448327

RESUMO

A phase transition between topologically distinct insulating phases involves closing and reopening the bandgap. Near the topological phase transition, the bulk energy spectrum is characterized by a massive Dirac dispersion, where the bandgap plays the role of mass. We report measurements of strain dependence of electrical transport properties of ZrTe5, which is known to host massive Dirac fermions in the bulk due to its proximity to a topological phase transition. We observe that the resistivity exhibits a pronounced minimum at a critical strain. We further find that the positive longitudinal magnetoconductance becomes maximal at the critical strain. This nonmonotonic strain dependence is consistent with the switching of sign of the Dirac mass and, hence, a strain-tuned topological phase transition in ZrTe5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...