Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 884632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340334

RESUMO

Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.

2.
Methods Mol Biol ; 2222: 263-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33301099

RESUMO

Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The "copy-out and paste-in" life cycle of replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative components in genome evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR) and quantitative or digital PCR with primers designed for the 5' or 3' junction. Marker systems exploiting these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome sequence data. The main inter-repeat amplification polymorphism techniques include inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.


Assuntos
Impressões Digitais de DNA/métodos , Variação Genética , Retroelementos , Primers do DNA , Marcadores Genéticos , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Polimorfismo Genético
3.
BMC Plant Biol ; 19(Suppl 1): 55, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813900

RESUMO

BACKGROUND: Leaves of Poaceae have a unique morphological feature: they consist of a proximal sheath and a distal blade separated by a ligular region. The sheath provides structural support and protects young developing leaves, whereas the main function of the blade is photosynthesis. The auricles allow the blade to tilt back for optimal photosynthesis and determine the angle of a leaf, whereas the ligule protects the stem from the entry of water, microorganisms, and pests. Liguleless variants have an upright leaf blade that wraps around the culm. Research on liguleless mutants of maize and other cereals has led to identification of genes that are involved in leaf patterning and differentiation. RESULTS: We characterized an induced liguleless mutant (LM) of Aegilops tauschii Coss., a donor of genome D of bread wheat Triticum aestivum L.. The liguleless phenotype of LM is under dominant monogenic control (Lgt). To determine precise position of Lgt on the Ae. tauschii genetic map, highly saturated genetic maps were constructed containing 887 single-nucleotide polymorphism (SNP) markers derived via diversity arrays technology (DArT)seq. The Lgt gene was mapped to chromosome 5DS. Taking into account coordinates of the SNP markers, flanking Lgt, on the pseudomolecule 5D, a chromosomal region that contains this gene was determined, and a list of candidate genes was identified. Morphological features of the LM phenotype suggest that Lgt participates in the control of leaf development, mainly, in leaf proximal-distal patterning, and its dominant mutation causes abnormal ligular region but does not affect reproductive development. CONCLUSIONS: Here we report characterization of a liguleless Ae. tauschii mutant, whose phenotype is under control of a dominant mutation of Lgt. The dominant mode of inheritance of the liguleless trait in a Triticeae species is reported for the first time. The position of the Lgt locus on chromosome 5DS allowed us to identify a list of candidate genes. This list does not contain Ae. tauschii orthologs of any well-characterized cereal genes whose mutations cause liguleless phenotypes. Thus, the characterized Lgt mutant represents a new model for further investigation of plant leaf patterning and differentiation.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Mutação/genética , Poaceae/genética , Triticum/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...