Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624123

RESUMO

Thermodynamic and dynamic anomalies of water play a crucial role in supporting life on our planet. The two-state theory attributes these anomalies to a dynamic equilibrium between locally favored tetrahedral structures (LFTSs) and disordered normal liquid structures. This theory provides a straightforward, phenomenological explanation for water's unique thermodynamic and dynamic characteristics. To validate this two-state feature, it is critical to unequivocally identify these structural motifs in a dynamically fluctuating disordered liquid. In this study, we employ a recently introduced structural parameter (θavg) that characterizes the local angular order within the first coordination shell to identify these LFTSs through molecular dynamics simulations. We employ both realistic water models with a liquid-liquid critical point (LLCP) and a coarse-grained water model without an LLCP to study water's anomalies in low-pressure regions below 2 kbar. The two-state theory consistently describes water's thermodynamic anomalies in these models, both with and without an LLCP. This suggests that the anomalies predominantly result from the two-state features rather than criticality, particularly within experimentally accessible temperature-pressure regions.

2.
Phys Rev E ; 105(3-1): 034604, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428046

RESUMO

The existence of two structural forms in liquid water has been a point of discussion for a long time. A phase transition between these two forms of liquid water has been proposed based on evidence from molecular simulations, and experiments have also been very recently able to track the proposed transition of the low-density liquid form to the high-density liquid form. We propose to use the average angle an oxygen atom makes with its neighbors to describe the structural environment of a water molecule. The distribution of this order parameter is observed to have two peaks with one peak at ∼109.5^{∘}, corresponding to the internal angle of a regular tetrahedron, indicating tetrahedral arrangement. The other peak corresponds to an environment with a tighter arrangement of neighboring molecules. The distribution of O-O-O angles is decomposed into two skewed distributions to estimate the fractions of the two liquid forms in water. A good similarity is observed between the temperature and pressure trends of fractions of locally favored tetrahedral structure (LFTS) form estimated using the new order parameter and the reports in the literature, over a range of temperatures and pressures. We also compare the structural environments indicated by different order parameters and find that the order parameter proposed in this paper captures the structure of first solvation shell of the LFTS accurately.

3.
AIChE J ; 68(11): e17891, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36591369

RESUMO

Modern thermodynamic models incorporate the concept of association (hydrogen bonding) and they can describe very satisfactorily many properties of water containing mixtures. They have not been successful in representing water's anomalous properties and this work provides a possible explanation. We have analyzed and interpreted recent experimental data, molecular simulation results, and two-state theory approaches and compared against the predictions from thermodynamic models. We show that the dominance of the tetrahedral structure implemented in modern thermodynamic models may be the reason for their failure for describing water systems. While this study does not prove the two-state theories for water, it indicates that a high level of tetrahedral structure of water is not in agreement with water's anomalous properties when used in thermodynamic models.

4.
J Phys Chem B ; 125(26): 7187-7198, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184538

RESUMO

The ability to form hydrogen bonds is one of the most important factors behind water's many anomalous properties. However, there is still no consensus on the hydrogen bond structure of liquid water, including the average number of hydrogen bonds in liquid water. We use molecular dynamics simulations of the polarizable iAMOEBA water model for investigating the hydrogen bond characteristics of liquid water over a wide range of temperatures and pressures. Geometric definitions of a hydrogen bond often use a rectangular region on the plane of hydrogen bond distances and angles. In this work, we find that an elliptical region is more appropriate for the identification of hydrogen bonds, based on statistically favorable molecular configurations. The two-dimensional potential of mean force (PMF) landscape along the hydrogen bond distance (O-H) and angle (O-H-O) is calculated for identifying the statistically favored molecular configurations, which is then used for defining hydrogen bond formation as well as the strength of a hydrogen bond. We further propose a new approach to characterize the hydrogen bonds as strong when the PMF is lower than -2 kT. Using this definition, a consistent explanation for the different average numbers of hydrogen bonds in water is obtained in agreement with the literature. Simulations are also performed with the rigid and nonpolarizable TIP4P/2005 water model. Both water models are qualitatively consistent in predicting the distribution of double-, single-, and non-donor configurations, in line with experimental data, while the iAMOEBA water model yields more quantitatively precise results, including a 10-15% double-donor fraction at 90 °C and 1 atm. The method is also demonstrated to be applicable to the recent, and more general, three-dimensional PMF-based definition of hydrogen bonds.


Assuntos
Simulação de Dinâmica Molecular , Água , Ligação de Hidrogênio , Conformação Molecular , Temperatura
5.
Langmuir ; 36(9): 2439-2448, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32069407

RESUMO

The antifreeze activity of a type-III antifreeze protein (AFP) expressed in ocean pout (Zoarces americanus) is compared with that of a specific mutant (T18N) using all-atom molecular dynamics simulations. The antifreeze activity of the mutant is only 10% of the wild-type AFP. The results from this simulation study revealed the following insights into the mechanism of antifreeze action by type-III AFPs. The AFP gets adsorbed to the advancing ice front due to its hydrophobic nature. A part of the hydrophobicity is caused by the presence of clathrate structure of water molecules near the ice-binding surface (IBS). The mutation in the AFP disrupts this structure and thereby reduces the ability of the mutant to adsorb to the ice-water interface leading to the loss of antifreeze activity. The mutation, however, has no effect on the ability of the adsorbed protein to bind to the growing ice phase. Simulations also revealed that all surfaces of the protein can bind to the ice phase, although the IBS is the preferred surface.


Assuntos
Proteínas Anticongelantes/metabolismo , Proteínas de Peixes/metabolismo , Água/metabolismo , Adsorção , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Perciformes , Ligação Proteica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...