Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 346: 118672, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776813

RESUMO

Due to climate change and rapid urbanisation, many Norwegian cities and urban areas suffer from pluvial flooding caused by intense rainfall exceeding the capacity of the stormwater management system. This results in increased runoff rates, volumes and peak flows in the drainage network. In response to these challenges, the authors explore the potential of utilising the urban surface's ability to transport floodwater as an integral component of the stormwater infrastructure. When the capacity of the stormwater drainage system is exceeded, the overland flow paths transporting floodwater are considered a part of the stormwater management system, as floodways. The study proposes a spatial GIS method to map existing drainage lines and identify existing surface areas that function as floodways, combined with an automated process to identify which drainage lines could be implemented as stormwater management measures. Critical points are introduced to assess the floodways' potential hazards, combined with a classification method to evaluate and sort floodways. A case study from Trondheim, Norway, was used to demonstrate how drainage lines can be identified as floodways using the proposed method. The case study is also used to illustrate how a GIS-based analysis can be extended from identifying to evaluating floodways and whether GIS is sufficient for floodway evaluation. The method enables urban planners and municipalities to identify which areas of the urban surface already function as floodways during extreme events, and to prioritise measures to secure such areas and increase the city's flood resilience. The results highlight the need to assess existing areas that function as floodways, and to implement and design needed areas as floodways. GIS-based methods combined with an evaluation scheme can be an adequate tool to map and evaluate floodways in urban areas. When using GIS-based methods, however, the corresponding hazard potential, and also the uncertainty of the floodway's spatial placement, should be considered.

2.
Water Sci Technol ; 85(5): 1363-1371, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290217

RESUMO

Historically, green infrastructure for stormwater management has been event-based designed. This study aims to realign the green infrastructure design strategies with principles for robust decision making, through the example of green roofs design with the variational method and exemplified using the Norwegian context of the 3-step approach (3SA) for stormwater management. The 3SA consists of planning solutions to handle day-to-day rain at site scale through infiltration (step 1) and detention (step 2), and extreme events with safe floodways (step 3). An innovative framework based on downscaling of rainfall timeseries is suggested as follows: (i) long duration continuous simulation for retention variation and day-to-day discharge, corresponding to step 1 in the 3SA; (ii) intensive sampling of local extreme events to estimate reliability and robustness of solutions, corresponding to steps 2 and 3 in the 3SA. Comparing the traditional variational method to Highly-Informed-Design-Evaluation-Strategy (HIDES), it was found that the variational method possibly leads to incorrect decisions while the suggested novel approach was found to give more informed and reliable results by suggesting a design based on both operating mode and failure mode. It allows to embed solutions within the urban water system by facilitating the link between the steps of the 3SA. Such a framework was found to be data-wise applicable in the Norwegian context.


Assuntos
Chuva , Movimentos da Água , Reprodutibilidade dos Testes , Fatores de Tempo , Água
3.
Water Res ; 145: 509-517, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30193194

RESUMO

This paper studies the hydraulic performance of two swales composed of filters for stormwater management (filtering swales) in a large-scale experimental study and compares them to the performance of a swale composed of traditional bioretention soil (bioswale). Using experimental data, dimensionless formulations are derived to reflect the influence of swale design parameters on hydraulic performance. The developed formulas can be used to design swales accounting for practical factors for decision makers such as local rainfall patterns, volume capture requirements, and drainage area. The experimental data show that while the bioswale is characterized by large overland flows, the tested filtering swales manage, in the majority of cases, the complete inflow volume without overland flow. The longitudinal slope of the swales does not affect the infiltration capacity of the filtering swales for the tested experimental boundary conditions, only the inflow rate and media water content are found to be statistically significant. As an example, filtering swales tested in this study captured 90% of the runoff generated by a 12.2 mm/h storm (approximately a 5-year return period 1-h duration storm event in the city of Trondheim) on a road 40 times larger than the swale. This highlights the capacity of such swales for handling infrequent events.


Assuntos
Hidrologia , Poaceae , Metais , Chuva , Solo , Movimentos da Água
4.
Water Sci Technol ; 56(10): 73-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18048979

RESUMO

Eight of the current sizing and design methods proposed for bioretention facilities were evaluated for rainfall runoff and snow storage volumes for a costal cold climate in Trondheim, Norway. The RECARGA bioretention infiltration model was used to compare the performance of the methods using 30 months of observed data from a pilot scale bioretention box. The surface areas, total ponding time, number and duration of overflow events, and snow storage volumes were compared. It was found that even in a costal cold climate with several intermittent melt cycles die snow storage requirements were an important design parameter, and if more than 25% of the total snow volume should stored this became the deciding design parameter.


Assuntos
Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Clima Frio , Chuva , Neve , Movimentos da Água
5.
Water Sci Technol ; 56(10): 83-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18048980

RESUMO

Nutrients can cause eutrophication of natural water bodies. Thus, urban stormwater which is an important nutrient source in urbanised areas has to be treated in order to reduce its nutrient loads. Biofilters which use soil filter media, biofilms and plants, are a good treatment option for nutrients. This paper presents the results of a biofilter column study in cold temperatures (+2 degrees C, +8 degrees C, control at +20 degrees C) which may cause special problems regarding biofilter performance. It was shown that particle-bound pollutants as TSS and a high fraction of phosphorus were reduced well without being negatively influenced by cold temperatures. Nitrogen, however, was not reduced; especially NO(x) was produced in the columns. This behaviour can be explained with both insufficient denitrification and high leaching from the columns.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Carex (Planta)/metabolismo , Filtração/métodos , Concentração de Íons de Hidrogênio , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Compostos de Amônio Quaternário/metabolismo , Chuva , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...