Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37792174

RESUMO

In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).

2.
Chemosphere ; 294: 133732, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35101434

RESUMO

Phenol is one of the major organic pollutants in high salt industrial wastewaters. The biological treatment of such waste using microorganisms is considered to be a cost-effective and eco-friendly method. However, in this process, salt tolerance of microorganisms is one of the main limiting factors. Halophilic microorganisms, especially halophilic archaea are thought to be appropriate for such treatment. To develop a novel effective biological method for high salt phenol wastewater treatment, the influence of phenol in high salt phenol wastewater on halophilic archaea and their extracellular polymeric substances (EPS) should be investigated. In the present study, using phenol enrichment method, 75 halophilic archaeal strains were isolated from Wuyongbulake salt lake sediment sample. The majority of the identified strains were phenol-tolerant. Six strains with high phenol tolerance were chosen, and the phenol scavenging effect was observed in the microbial suspension, supernatant, and EPS. It was noticed that the phenol degradation rate of suspensions of both strains 869-1, and 121-1 in salt water exhibited the highest rates of 83.7%, while the supernatant of strain 869-1 reached the highest rate of 78.2%. When combined with the comprehensive analysis of the artificial wastewater simulation experiment, it was discovered that in the artificial wastewater containing phenol, the phenol degradation rate of suspension of strain A387 exhibited the highest rates of 55.74% both, and supernatant of strain 630-3 reached the highest rate of 62.3%. The EPS produced by strains A00135, 558-1, 869-1, 121-1 and A387 removed 100% phenol within 96 h, and the phenol removal efficiency of EPS produced by 869-1 reached 56.1% under an artificial wastewater simulation experiment with high salt (15%NaCl) condition. The present study suggests that halophilic archaea and their EPS play an important role in phenol degradation. This approach could be potentially used for industrial high-salt wastewater treatment.


Assuntos
Fenol , Águas Residuárias , Archaea/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Fenol/metabolismo , Fenóis
3.
Carbohydr Polym ; 230: 115646, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887894

RESUMO

In this study graphene/chitosan nanoparticles (GR/CS NCs) were developed. The homogenous combination of GR and CS was confirmed by FTIR spectroscopy. The combination of CS with GR sheets reduced the XRD intensity of the GR peak in GR/CS NCs, while TEM images revealed the immobile CS coating of GR sheets. Further, the anti-biofilm activity of GR/CS NCs was tested. The tests showed that the formation of biofilm by Pseudomonas aeruginosa and Klebsiella pneumoniae was inhibited at 40□g/mL GR/CS NCs up to 94 and 92 %, respectively. The intracellular and cell surface damage of the bacteria was observed by CLSM and SEM. Also, GR/CS NCs produced a toxic effect of 90 % on Artemia franciscana at 70□g/mL upon 24 h incubation. The recorded properties of the synthesized GR/CS NCs qualify them as potential agents against multi-drug resistant bacteria.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana/farmacologia , Grafite/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Quitosana/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Grafite/química , Humanos , Nanopartículas/uso terapêutico , Infecções Urinárias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...