Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 566: 224-233, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006818

RESUMO

Developing cost-effective and efficient oxygen evolution reaction (OER) electrocatalyst is highly essential for energy-conversion technologies. A self-assembled NiFe-layered double hydroxide (LDH)@MnCO3 heterostructure prepared on Ni foam using a successive hydrothermal strategy shows notable catalytic activity toward the OER with a small overpotential of 275 mV to drive a geometrical current density of 10 mA cm-2 under alkaline conditions with remarkable stability for 15 h, outperforming IrO2/C electrocatalyst (350 mV@10 mA cm-2). The hierarchical NiFe-LDH@MnCO3 heterostructure possess more exposed active sites, enhanced conductivity and superior interfacial coupling effect makes them an ideal candidate for OER electrocatalyst.

2.
Biosens Bioelectron ; 126: 160-169, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399518

RESUMO

In this work, an ultra-sensing photoelectrochemical (PEC) glucose biosensor has been constructed from the bio-derived nitrogen-doped carbon sheets (NDC) wrapped titanium dioxide nanoparticles (NDC-TiO2 NPs) followed by the covalent immobilization of glucose oxidase (GODx) on them (designated as a GODx/NDC-TiO2NPs/ITO biosensor). Initially, the TiO2 NPs was synthesized by sol-gel method and then NDC-TiO2 NPs was synthesized utilizing a green source of Prunus persica (peach fruit) through a simple hydrothermal process. The synthesized NDC-TiO2 NPs composite was characterized by FESEM, HRTEM, Raman spectroscopy, XRD, ATR-FTIR spectroscopy and XPS to determine composition and phase purity. These fabricated GODx/NDC-TiO2NPs/ITO biosensor exhibited a good charge separation, highly enhanced and stable photocurrent responses with switching PEC behavior under the light (λ > 400 nm). As a result, GODx/NDC-TiO2NPs/ITO PEC glucose sensor exhibits a good photocurrent response to detection of glucose concentrations (0.05-10 µM) with an ultra-low detection limit of 13 nM under optimized PEC experimental conditions. Also, the PEC glucose sensor revealed a high selectivity, good stability, long time durability, and capability to analyze the glucose levels in real human serum. Also, the further development of this work may provide new insights into preparing other bio-derived carbon nanostructure-based photocatalysts for PEC applications.


Assuntos
Técnicas Biossensoriais , Glicemia/isolamento & purificação , Técnicas Eletroquímicas , Glucose/isolamento & purificação , Glicemia/química , Carbono/química , Glucose/química , Humanos , Nanopartículas/química , Nitrogênio/química , Titânio/química
3.
Nanomaterials (Basel) ; 8(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495634

RESUMO

Research on the synthesis of nanomaterials using metal-organic frameworks (MOFs), which are characterized by multi-functionality and porosity, as precursors have been accomplished through various synthetic approaches. In this study, copper and copper oxide nanoparticles were fabricated within 30 min by a simple and rapid method involving the reduction of a copper(II)-containing MOF with sodium borohydride solution at room temperature. The obtained nanoparticles consist of a copper core and a copper oxide shell exhibited catalytic activity in the oxygen reduction reaction. The as-synthesized Cu@Cu2O core-shell nanocatalyst exhibited an enhanced limit current density as well as onset potential in the electrocatalytic oxygen reduction reaction (ORR). Moreover, the nanoparticles exhibited good catalytic activity in the Huisgen cycloaddition of various substituted azides and alkynes under mild reaction conditions.

5.
Sci Rep ; 7: 45079, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338088

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

6.
Korean J Orthod ; 47(1): 3-10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28127534

RESUMO

OBJECTIVE: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. METHODS: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. RESULTS: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. CONCLUSIONS: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.

7.
Polymers (Basel) ; 8(12)2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30974719

RESUMO

Hydrogels find applications in various fields, and the ever-growing spectrum of available monomers, crosslinking, and nanotechnologies widen the application of polymer hydrogels. Herein, we describe the preparation of a new graphene (G)- and polyaniline (PANI)-containing functional polymer gel (G/PANI/FG) through a facile crosslinking copolymerization approach. Several characterization techniques such as field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy were employed to understand the physicochemical characteristics of the G/PANI/FG. The new G/PANI/FG was used as an adsorbent for chromium (VI) and exhibited the highest Cr (VI) removal efficiency (~97%). The inclusion of G and PANI in the gel results in high surface area, 3D porous structure, and Cr (VI)-chelating amine sites, which enhanced the Cr (VI) removal efficiency and thermal stability of the gel adsorbent. The results of our study revealed that G/PANI/FG is suited for the removal of Cr (VI) from aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...