Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 11(1): 290, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751818

RESUMO

OBJECTIVES: The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotated protein sequences in the databases motivated us to develop an improved version of "Oxypred" for identifying oxygen-binding proteins. RESULTS: In this study, we have proposed a method for identifying oxy-proteins with two different sequence similarity cutoffs 50 and 90%. A different amino acid composition based Support Vector Machines models was developed, including the evolutionary profiles in the form position-specific scoring matrix (PSSM). The fivefold cross-validation techniques were applied to evaluate the prediction performance. Also, we compared with existing methods, which shows nearly 97% recognition, but, our newly developed models were able to recognize almost 99.99 and 100% in both oxy-50 and 90% similarity models respectively. Our result shows that our approaches are faster and achieve a better prediction performance over the existing methods. The web-server Oxypred2 was developed for an alternative method for identifying oxy-proteins with more additional modules including PSSM, available at http://bioinfo.imtech.res.in/servers/muthu/oxypred2/home.html .


Assuntos
Evolução Biológica , Proteínas de Transporte/metabolismo , Hemeproteínas/metabolismo , Hemeritrina/metabolismo , Hemocianinas/metabolismo , Oxigênio/metabolismo , Máquina de Vetores de Suporte , Animais
2.
BMC Res Notes ; 7: 63, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468032

RESUMO

BACKGROUND: Plasminogen (Pg), the precursor of the proteolytic and fibrinolytic enzyme of blood, is converted to the active enzyme plasmin (Pm) by different plasminogen activators (tissue plasminogen activators and urokinase), including the bacterial activators streptokinase and staphylokinase, which activate Pg to Pm and thus are used clinically for thrombolysis. The identification of Pg-activators is therefore an important step in understanding their functional mechanism and derives new therapies. METHODS: In this study, different computational methods for predicting plasminogen activator peptide sequences with high accuracy were investigated, including support vector machines (SVM) based on amino acid (AC), dipeptide composition (DC), PSSM profile and Hybrid methods used to predict different Pg-activators from both prokaryotic and eukaryotic origins. RESULTS: Overall maximum accuracy, evaluated using the five-fold cross validation technique, was 88.37%, 84.32%, 87.61%, 85.63% in 0.87, 0.83,0.86 and 0.85 MCC with amino (AC) or dipeptide composition (DC), PSSM profile and Hybrid methods respectively. Through this study, we have found that the different subfamilies of Pg-activators are quite closely correlated in terms of amino, dipeptide, PSSM and Hybrid compositions. Therefore, our prediction results show that plasminogen activators are predictable with a high accuracy from their primary sequence. Prediction performance was also cross-checked by confusion matrix and ROC (Receiver operating characteristics) analysis. A web server to facilitate the prediction of Pg-activators from primary sequence data was implemented. CONCLUSION: The results show that dipeptide, PSSM profile, and Hybrid based methods perform better than single amino acid composition (AC). Furthermore, we also have developed a web server, which predicts the Pg-activators and their classification (available online at http://mamsap.it.deakin.edu.au/plas_pred/home.html). Our experimental results show that our approaches are faster and achieve generally a good prediction performance.


Assuntos
Ativadores de Plasminogênio/química , Máquina de Vetores de Suporte , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Bases de Dados de Proteínas , Dipeptídeos/química , Células Eucarióticas/enzimologia , Humanos , Internet , Modelos Químicos , Dados de Sequência Molecular , Ativadores de Plasminogênio/classificação , Células Procarióticas/enzimologia , Curva ROC , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...