Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 113(6): 4276-4292, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34785351

RESUMO

Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.


Assuntos
Eucalyptus , Eucalyptus/genética , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Madeira/genética
2.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34282737

RESUMO

Eucalyptus breeding programme mainly aims at increasing productivity associated with wood property traits which are suitable for different end uses. The principal challenge in this endeavor is to combine productivity with industrially relevant wood traits. In the present study, 23 hybrid clones derived from a biparental mapping population of Eucalyptus camaldulensis × E. tereticornis was assessed for six wood property traits across two sites in Tamil Nadu, India. The mean of most of the traits evaluated was consistently higher in Muthupettai, indicating significant site effect. Combined and location-wise analysis indicated additive genetic control of assessed traits. The stability of acoustic velocity in study sites, negligible G × E interaction and significant correlation with dynamic modulus of elasticity (DMoE) implies its use in selecting trees/logs for solid wood properties. Combined analysis of locations revealed low to moderate heritability (0.294-0.439) for all the traits with H2 being highest for cellulose per cent (0.439) followed by acoustic velocity (0.416). Genetic advance was calculated and was the highest for diameter (10.47%) followed by DMoE (9.19%). The two major chemical constituents of wood, namely total lignin and cellulose per cent showed 7.13% and 7.53% advancement in the hybrids. The out-performance of several hybrid clones when compared to the parents for different wood traits reiterates the use of Eucalyptus hybrids in plantation programmes to improve quality of raw material suitable for industrial application.


Assuntos
Eucalyptus/química , Hibridização Genética , Locos de Características Quantitativas/genética , Madeira/genética , Eucalyptus/genética , Índia , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Madeira/química
3.
Microbiol Res ; 241: 126579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861101

RESUMO

The genus Eucalyptus with over 747 species occurs in wide ecological range and is preferred for bioenergy plantations due to their short rotation, rapid growth and superior wood properties. They are planted in 22 million ha area and India is third largest planter of Eucalyptus. In the present study, the bacterial endophyte community in leaves of six Eucalyptus clones belonging to E. tereticornis and E. camaldulensis was assessed by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The clones were selected based on their response to progressive water stress. A total of 4947 operational taxonomic units (OTUs) were obtained and the dominant phyla were Proteobacteria, Bacteroidetes and Firmicutes. Escherichia coli was enriched in all samples at species level. Comparison of endophyte diversity was conducted between the two species and across the water stress tolerant and susceptible clones. The alpha-diversity analysis revealed that species richness and diversity was high in E. camaldulensis and water stress susceptible clones. LefSe analysis predicted 69 and 54 significantly enriched taxonomic biomarkers between species and stress response groups respectively. A maximum of 49 taxonomic biomarkers were recorded in susceptible group and the significantly enriched species were Bacteroides thetaiotaomicron and Turicibacter sanguinis, while the tolerant group documented 5 biomarkers including oscillibacter sp. The presence of functional biomarkers was also assessed in both the groups. The findings of the present study provides an insight into the diversity of bacterial endophyte in Eucalyptus leaves and to our knowledge this is the first report on documenting the endophyte abundance in water stress responsive Eucalyptus clones.


Assuntos
Bacteroidetes/isolamento & purificação , Escherichia coli/isolamento & purificação , Eucalyptus/microbiologia , Firmicutes/isolamento & purificação , Proteobactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Biomarcadores/análise , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/genética , Firmicutes/classificação , Firmicutes/genética , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...