Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10238-10250, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372639

RESUMO

The electrochemical conversion of oxygen holds great promise in the development of sustainable energy for various applications, such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Oxygen electrocatalysts are needed that are both highly efficient and affordable, since they can serve as alternatives to costly precious-metal-based catalysts. This aspect is particularly significant for their practical implementation on a large scale in the future. Herein, highly porous polyhedron-entrapped metal-organic framework (MOF)-assisted CoTe2/MnTe2 heterostructure one-dimensional nanorods were initially synthesized using a simple hydrothermal strategy and then transformed into ZIF-67 followed by tellurization which was used as a bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The designed MOF CoTe2/MnTe2 nanorod electrocatalyst exhibited superior activity for both OER (η = 220 mV@ 10 mA cm-2) and ORR (E1/2 = 0.81 V vs RHE) and outstanding stability. The exceptional achievement could be primarily credited to the porous structure, interconnected designs, and deliberately created deficiencies that enhanced the electrocatalytic activity for the OER/ORR. This improvement was predominantly due to the enhanced electrochemical surface area and charge transfer inherent in the materials. Therefore, this simple and cost-effective method can be used to produce highly active bifunctional oxygen electrocatalysts.

2.
ACS Omega ; 8(45): 42689-42698, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024713

RESUMO

Material-specific electrocatalytic activity and electrode design are essential factors in evaluating the performance of electrochemical sensors. Herein, the technique described involves electrospinning manganese-based metal-organic frameworks (Mn-MOFs) to develop MnOx nanostructures embedded in carbon nanofibers. The resulting structure features an electrocatalytic material for an enzyme-free glucose sensor. The elemental composition, morphology, and microstructure of the fabricated electrodes materials were characterized by using energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric i-t (current-time) techniques are characteristically employed to assess the electrochemical performance of materials. The MOF MnOx-CNFs nanostructures significantly improve detection performance for nonenzymatic amperometric glucose sensors, including a broad linear range (0 mM to 9.1 mM), high sensitivity (4080.6 µA mM-1 cm-2), a low detection limit (0.3 µM, S/N = 3), acceptable selectivity, outstanding reproducibility, and stability. The strategy of metal and metal oxide-integrated CNF nanostructures based on MOFs opens interesting possibilities for the development of high-performance electrochemical sensors.

3.
Chemistry ; 29(27): e202300137, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807426

RESUMO

The electrochemical oxygen evolution reaction (OER) is a key process in many renewable energy systems. The development of low-cost, long-lasting alternatives to precious-metal catalysts, particularly functional electrocatalysts with high activity for OER processes, is crucial for reducing the operating expense and complexity of renewable energy generating systems. This work describes a concise method for generating marigold flower-like metal-organic frameworks (MOFs) aided manganese vanadium oxide via a hydrothermal procedure for increased OER activity. As synthesized MOF MnV oxide has a higher surface area due to the 3D flower-like structure, which is reinvented with enhanced electrocatalytic active sites. These distinctive structural features result in remarkable catalytic activity for MOF MnV oxide microflowers towards OER with a low overpotential of 310 mV at 50 mA cm-2 and a Tafel slope with only 51.4 mV dec-1 in alkaline conditions. This study provides a concise method for developing an optimized catalytic material with greater morphology and beneficial features for potential energy and environmental applications.

4.
ACS Biomater Sci Eng ; 9(2): 1002-1010, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36629494

RESUMO

Carbon dots (CDs) are considered a potential substance for use in biomarker applications due to their exceptional light stability. However, there are several unsolved uncertainties about CD toxicity in vitro and in vivo. In this study, a redesigned derivative of the natural polysaccharide inulin is connected with boron-doped amine-functionalized carbon dots (In@BN-CDs) through carbodiimide coupling to improve the biocompatibility of the nanoformulation. The toxicity and biodistribution of ln@BN-CDs in vivo and in vitro were explored in detail. The In@BN-CDs were tested after a single inhalation dosage of 10, 7, 5, 3, and 1 mg/kg. We explored a dose- and time-dependent technique of collecting blood samples and then centrifuged the blood samples and obtained serum samples, which were then analyzed for fluorescence inspection; findings showed that the fluorescence intensity decreased with time. Similarly, In@BN-CDs were effectively used as in vitro toxicity and fluorescent probes for cellular imaging in living cells due to their biocompatibility and cell membrane accessibility. The biocompatibility and efficacy of In@BN-CDs as fluorescent imaging agents have been demonstrated. The data suggest that the usage of In@BN-CDs in vitro and in vivo should be examined.


Assuntos
Boro , Inulina , Distribuição Tecidual , Carbono , Corantes Fluorescentes
5.
Adv Sci (Weinh) ; 9(20): e2200650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567356

RESUMO

The hurdle of fabricating asymmetric supercapacitor (ASC) devices using a faradic cathode and a double layer anode is challenging due to the required large amount of active mass of anodic material compared to that of the cathodic material during mass balancing due to the large difference in capacitance values of the two electrodes. Here, the problem is addressed by engineering a negative electrode that furnishes an ultrahigh capacitance. An in situ developed metal-organic framework (MOF)-based thermal treatment is adopted to grow highly porous N-doped carbon nanotubes (CNTs) containing submerged Co nanoparticles over nano-fibrillated electrospun hollow carbon nanofibers (HCNFs). The optimized CNT@HCNF-1.5 furnishes an ultrahigh capacitance approaching 712 F g-1 with excellent rate capability. The capacitance reported from this work is the highest for any carbonaceous material reported to date. The CNT@HCNF-1.5 is further used to fabricate symmetric supercapacitors (SSCs), as well as ASC devices. Remarkably, both the SSC and ASC devices furnish incredible performances in all aspects of SCs, such as a high energy density, long cycle life, and high rate capability, displaying decent practical applicability. The energy density of the SSC device reaches as high as 20.13 W h kg-1 , whereas that of ASC approaches 87.5 W h kg-1 .

6.
Artigo em Inglês | MEDLINE | ID: mdl-35548975

RESUMO

The structural design of transition metal-based electrode materials with gigantic energy storage capabilities is a crucial task. In this work, we report an assembly of thin layered double hydroxide (LDH) nanosheets arrayed throughout the luminal and abluminal parts of polypyrrole tunnels fastened onto both sides of a carbon cloth as a battery-type energy storage system. Electron microscopy images reveal that the resulting electrode (NiCo-LDH@H-PPy@CC, where H-PPy@CC represents carbon cloth-supported hollow polypyrrole fibers) is constructed by combining luminal and abluminal NiCo-LDH nanosheets onto a long polypyrrole tunnel on a carbon cloth. The primary sample shows an excellent specific capacity of 149.16 mAh g-1 at 1.0 mA cm-2, a remarkable rate capability of 80.45%, and comprehensive cyclic stability (93.4%). The improved performance is mainly attributed to the strategic organization of the electrode materials with superior Brunauer-Emmett-Teller (BET) surface area and conductivity. Moreover, an asymmetric supercapacitor device assembled with NiCo-LDH@H-PPy@CC and vanadium phosphate-incorporated carbon nanofiber (VPO@CNFs900) electrodes contributes a specific energy density of 32.42 Wh kg-1 at 3 mA cm-2 with a specific power density of 359.16 W kg-1. When the current density is increased by 6-fold, the specific power density reaches 1999.89 W kg-1 at a specific energy density of 20.06 Wh kg-1. This is a simple, cost-effective, and convenient synthetic strategy for the synthesis of porous nanosheet arrays assimilated into hollow fiber architectures, which can illuminate the ideal approach for the fabrication of novel materials with an immense potential for energy storage.

7.
J Colloid Interface Sci ; 618: 475-482, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366475

RESUMO

The water oxidation process, which comprises the oxygen evolution reaction (OER), is a critical catalytic mechanism for sustainable technologies like water electrolysis and fuel cells. Herein, we develop a unique metal-organic framework aided vanadium pentoxide nanorods (MOF-V2O5 NRs-500) that can be used as an OER electrocatalyst under alkaline solutions. The crystal structure, surface chemical state, and porosity of MOF-V2O5 NRs-500 can be altered by annealing in an oxygen atmosphere. The resultant MOF-V2O5 NRs-500 demonstrate high catalytic activity against OER in basic conditions, with a low overpotential of 300 mV at a derived current density of 50 mA cm-2, and extraordinary durability of more than 50 h. Superior electrochemical performance might be attributed to the high exposure level of active sites emanating from porous MOF-V2O5 NRs-500. Furthermore, the porous MOF-V2O5 NRs-500 skeleton may provide homogenous mass transport channels as well as quick electron transfer.

8.
Nanoscale ; 14(17): 6557-6569, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35420613

RESUMO

There is still a significant technical hurdle in the integration of better electrocatalysts with coordinated functional units and morphological integrity that improves reversible electrochemical activity, electrical conductivity, and mass transport capabilities. In this work, ruthenium-integrating porous bimetallic transition metal nanoarrays are efficiently generated from metal-organic framework-covered three-dimensional platforms such as carbon cloth using a simple solution-based deposition technique followed by calcination. Heterostructure ruthenium-cobalt-iron hollow nanoarrays are built to permit exceptionally effective multifunctional activities in reactions including the oxygen evolution reaction, hydrogen evolution reaction, and oxygen reduction reaction. As presumed, the as-synthesized porous nanostructured arrays show remarkable electrochemical performance due to the benefits of copious active reaction sites, and efficient electron and ion transport channels. The oxygen reduction reaction of the porous nanostructured array electrocatalyst has a half-wave potential of 0.875 V vs. reversible hydrogen electrode and can achieve a current density of 10 mA cm-2 at low overpotentials of 220 and 50 mV for the oxygen and hydrogen evolution reactions, respectively, and the needed cell voltage for total water splitting is just 1.49 V at a current density of 10 mA cm-2. The fabricated electrolyzer coupling splits seawater at relatively low cell voltages of 1.54 V at ambient temperature.

9.
J Colloid Interface Sci ; 616: 679-690, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245794

RESUMO

The development of multicomponent materials is the most efficient and successful way for creating advanced multifunctional catalysts. Herein, the bimetal FeCo nanoarrays enclosed N-CNTs have a high surface on carbon cloth support, which promotes efficient electron transport and prevents nanoparticle aggregation. Taking advantage of the high-level use of active material and fast charge transfer, the developed electrocatalyst exhibits excellent multifunctional electrocatalyst such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The N-CNTs@MOF FeCo nanoarrays @CC exhibit higher activity than reference catalysts including MOF FeCo nanoarrays@CC, FeCo nanoarrays@CC, and CC. Interestingly, the synthesized multifunctional catalyst, which serves as the air electrode in zinc-air batteries with liquid electrolytes as well as solid-state gel electrolytes possesses outstanding charging-discharge performance and long service life. This study provides enormous potential for the real implementation of portable, even wearable, and efficient rechargeable batteries in the future.

10.
ACS Appl Mater Interfaces ; 13(20): 23732-23742, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33977710

RESUMO

The fabrication of an economic and efficient multifunctional advanced nanomaterial with a rational composition and configuration by a facile methodology is a crucial challenge. Herein, we are the first to report the growth of Co nanoparticle-integrated nitrogen-doped carbon nanotubes (N-CNTs) on porous carbon nanofibers by simply heating in the situ-developed metal-organic framework (MOF)-based electrospun nanofibrous membrane with no need for an external supply of any additional precursors and reducing gases. The long and entangled N-CNTs originating from highly porous and graphitic carbon nanofibers offer good flexibility, large surface area, high porosity, high conductivity, the homogeneous incorporation of heteroatoms and metallic constituents, and an abundant exposure of active nanocatalytic sites. The as-developed nanoassembly demonstrates attractive characteristics for electrocatalytic hydrogen and oxygen evolution reactions and electrochemical energy storage. This strategy of integrating the essence of an MOF with electrospinning offers a new, direct, and cost-effective approach for making N-doped CNT-based multifunctional membranes.

11.
ACS Appl Mater Interfaces ; 12(37): 41704-41717, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32878430

RESUMO

The fast development of portable water-splitting devices has led to a great deal of work on rechargeable metal-air batteries or solar cells; however, the lack of affordable multifunctional electrocatalysts still hampers their widespread applications. Herein, a well-aligned ternary metal (oxy)hydroxide nanostructure is a sacrificial pseudomorphic transformation template of an integrated metal-organic network on the carbon cloth (CC) surface, that is, the Fe-doped metal-organic framework (MOF) ZnNiCoSe@CC nanosheet network, exhibiting powerful and efficient multifunctional electrocatalysts such as the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction in alkaline media combined with desirable electrode kinetics. As a proof-of-concept observational study, the nanostructured Fe-doped MOF ZnNiCoSe@CC could be used as air-cathode materials in the rechargeable metal-air battery. The fabricated device delivered higher open-circuit voltage, higher capacity, and peak power density, excellent discharge-charge performance, and long cycle life. Thus, our research creates a unique perspective on the development of highly portable air electrodes with a favorable electrocatalytic application of overall water-splitting reaction.

12.
Inorg Chem ; 59(6): 3817-3827, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090552

RESUMO

The development of bifunctional, highly active electrocatalysts for an overall water splitting reaction remains a major challenge. Here, the sacrificial template-assisted transformation of cobalt hydroxide nanowire (Co(OH)2 NW) into a metal-organic framework network (MOF) is conceived as a porous structure that provides extremely active and durable electrochemical energy conversion characteristics. After this, the 1D MOF modified Co NWs can be further transformed into a hybrid structure (MOF CoSeO3 NWs) by selenization. The self-template transformation strategy allows the interconnected porous conductive network to be exposed to abundant reactive sites and to improve electronic conductivity/structural integrity. Thus, the obtained catalyst established by electrocatalytic activity in the course of the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in 1 M KOH solution requires overpotentials (η) of 290 and 150 mV to achieve a current density of 50 and 10 mA cm-2 for both OER and HER. Interestingly, as a full cell water electrolyzer (MOF CoSeO3 NWs (+) // MOF CoSeO3 NWs (-)), the MOF CoSeO3 NW's modified electrode exhibits an affordable cell voltage of 1.675 V at a current density of 100 mA cm-2. This work involves a viable and systematic strategy to prepare many other functional integrated MOFs that can be used for energy storage and conversion in multiple applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...