Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3786, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224640

RESUMO

The search for two-dimensional quantum spin liquids, exotic magnetic states remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism over the last few decades. Recently, evidence for fractionalized excitations, called spinons, emerging from these states has been observed in kagome and triangular antiferromagnets. In contrast, quantum ferromagnetic spin liquids in two dimensions, namely quantum kagome ices, have been less investigated, yet their classical counterparts exhibit amazing properties, magnetic monopole crystals as well as magnetic fragmentation. Here, we show that applying a magnetic field to the pyrochlore oxide Nd2Zr2O7, which has been shown to develop three-dimensional quantum magnetic fragmentation in zero field, results in a dimensional reduction, creating a dynamic kagome ice state: the spin excitation spectrum determined by neutron scattering encompasses a flat mode with a six arm shape akin to the kagome ice structure factor, from which dispersive branches emerge.

2.
Nat Commun ; 8: 14543, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216631

RESUMO

Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian.

3.
Phys Rev Lett ; 114(22): 227203, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196642

RESUMO

We report the results of neutron diffraction and inelastic neutron scattering on a powder sample of Gd_{3}Ga_{5}O_{12} at high magnetic fields. Analysis of the diffraction data shows that in high fields (B≳1.8 T) the spins are not fully aligned, but are canted slightly as a result of the dipolar interaction. The magnetic phase for fields ≲1.8 T is characterized by antiferromagnetic peaks at (210) and an incommensurate wave vector. The dominant contribution to inelastic scattering at large momentum transfers is from a band of almost dispersionless excitations. We show that these correspond to the spin waves localized on ten site rings, expected on the basis of nearest neighbor exchange interaction, and that the spectrum at high fields B≳1.8 T is well described by a spin wave theory.

4.
Phys Rev Lett ; 112(1): 017203, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483925

RESUMO

At low temperatures, Tb2Ti2O7 enters a spin liquid state, despite expectations of magnetic order and/or a structural distortion. Using neutron scattering, we have discovered that in this spin liquid state an excited crystal field level is coupled to a transverse acoustic phonon, forming a hybrid excitation. Magnetic and phononlike branches with identical dispersion relations can be identified, and the hybridization vanishes in the paramagnetic state. We suggest that Tb2Ti2O7 is aptly named a "magnetoelastic spin liquid" and that the hybridization of the excitations suppresses both magnetic ordering and the structural distortion. The spin liquid phase of Tb2Ti2O7 can now be regarded as a Coulomb phase with propagating bosonic spin excitations.

5.
Phys Rev Lett ; 102(15): 157202, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518671

RESUMO

The antiferromagnetic molecular wheel Fe18 of 18 exchange-coupled Fe;{III} ions has been studied by magnetic torque, magnetization, and inelastic neutron scattering. The combined data show that the low-temperature magnetism of Fe18 is very accurately described by the Néel-vector tunneling (NVT) scenario, as unfolded by semiclassical theory. In addition, the magnetic torque as a function of applied field exhibits oscillations that reflect the oscillations in the NVT splitting with field due to quantum phase interference.

6.
Phys Rev Lett ; 100(15): 157203, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518147

RESUMO

We study the spin dynamics in two variants of the high-anisotropy Mn6 nanomagnet by inelastic neutron scattering, magnetic resonance spectroscopy and magnetometry. We show that a giant-spin picture is completely inadequate for these systems and that excited S multiplets play a key role in determining the effective energy barrier for the magnetization reversal. Moreover, we demonstrate the occurrence of tunneling processes involving pair of states having different total spin.

7.
Phys Rev Lett ; 100(20): 205701, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518554

RESUMO

We follow the evolution of the elementary excitations of the quantum antiferromagnet TlCuCl3 through the pressure-induced quantum critical point, which separates a dimer-based quantum disordered phase from a phase of long-ranged magnetic order. We demonstrate by neutron spectroscopy the continuous emergence in the weakly ordered state of a low-lying but massive excitation corresponding to longitudinal fluctuations of the magnetic moment. This mode is not present in a classical description of ordered magnets, but is a direct consequence of the quantum critical point.

8.
Phys Rev Lett ; 97(4): 047203, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907610

RESUMO

A neutron spin-echo investigation of the low temperature spin dynamics in two well-characterized kagomé bilayer compounds SrCr9xGa12-9xO19 (x=0.95, SCGO) and Ba2Sn2ZnCr7xGa10-7xO22 (x=0.97, BSZCGO) reveals two novel features. One is the slowing down of the relaxation rate without critical behavior at Tg, where a macroscopic spin-glass-like freezing occurs. The second is, in SCGO at 4 K (approximately Tg)

9.
Phys Rev Lett ; 94(23): 237402, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-16090501

RESUMO

Inelastic neutron scattering results on the spin-orbital liquid in FeSc2S4 are presented. This sulfospinel reveals strong geometric frustration in the spin and in the orbital sector. In the present experiments the orbital liquid is evidenced by a clear spectroscopic signature of a dynamic Jahn-Teller effect with a vibronic splitting 3Gamma approximately 2 meV in agreement with theoretical estimates. The excitations of the spin liquid reveal strong dispersion and can be characterized as cooperative spin excitations in a supercooled paramagnet with a spin gap of Delta approximately 0.2 meV.

10.
Phys Rev Lett ; 95(5): 057202, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16090913

RESUMO

From inelastic neutron scattering experiments, we demonstrate quantum tunneling of the Néel vector in the antiferromagnetic molecular ferric wheel CsFe8. Analysis of the linewidth of the tunneling transition evidences coherent tunneling.

11.
Phys Rev Lett ; 95(26): 267201, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486391

RESUMO

The compound TlCuCl(3) represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Würtz [Phys. Rev. B 50, 13 515 (1994)10.1103/Phys. Rev. B 50, 13515] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important.

12.
Phys Chem Chem Phys ; 7(8): 1617-9, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19787915

RESUMO

The generalized density of states of LaFe4Sb12 and CeFe4Sb12 has been determined by inelastic neutron scattering and its main features are found to be in agreement with recently published calculations (J. L. Feldman, D. L. Singh, C. Kendziora, D. Mandrus and B. C. Sales, Phys. Rev. B, 2003, 68, 094301). In both compounds a localized vibrational contribution appears superposed on the low-energy Debye response. The distinct inelastic response of La in LaFe4Sb12 is obtained by subtraction of the data for the Ce filled compound and it shows even more clearly the resolution limited peak at 7 meV, attributed to the localized mode of La-atoms.


Assuntos
Antimônio/química , Cério/química , Ferro/química , Lantânio/química , Nêutrons , Termodinâmica
13.
Nature ; 423(6935): 62-5, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12721623

RESUMO

Bose-Einstein condensation denotes the formation of a collective quantum ground state of identical particles with integer spin or intrinsic angular momentum. In magnetic insulators, the magnetic properties are due to the unpaired shell electrons that have half-integer spin. However, in some such compounds (KCuCl3 and TlCuCl3), two Cu2+ ions are antiferromagnetically coupled to form a dimer in a crystalline network: the dimer ground state is a spin singlet (total spin zero), separated by an energy gap from the excited triplet state (total spin one). In these dimer compounds, Bose-Einstein condensation becomes theoretically possible. At a critical external magnetic field, the energy of one of the Zeeman split triplet components (a type of boson) intersects the ground-state singlet, resulting in long-range magnetic order; this transition represents a quantum critical point at which Bose-Einstein condensation occurs. Here we report an experimental investigation of the excitation spectrum in such a field-induced magnetically ordered state, using inelastic neutron scattering measurements of TlCuCl3 single crystals. We verify unambiguously the theoretically predicted gapless Goldstone mode characteristic of the Bose-Einstein condensation of the triplet states.

14.
Nature ; 419(6902): 15, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12214208
15.
Phys Rev Lett ; 84(9): 1990-3, 2000 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11017678

RESUMO

The oxygen isotope effect on the relaxation rate of crystal-field excitations in the slightly underdoped high-temperature superconductor HoBa2Cu4O8 has been investigated by means of inelastic neutron scattering. For the 16O compound there is clear evidence for the opening of an electronic gap in the normal state at T(*) approximately 170 K far above T(c) = 79 K. Upon oxygen isotope substitution ( 16O vs 18O) T(c) decreases marginally to 78.5 K, whereas T(*) is shifted to about 220 K. This huge isotope shift observed for T(*) which is absent in NMR and NQR experiments suggests that the mechanism leading to an isotope effect on the pseudogap has to involve a time scale in the range 10(-8)>>tau>10(-13) s.

16.
Phys Rev Lett ; 84(9): 1990-3, 2000 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21923214

RESUMO

The oxygen isotope effect on the relaxation rate of crystal-field excitations in the slightly underdoped high-temperature superconductor HoBa_{2}Cu_{4}O_{8} has been investigated by means of inelastic neutron scattering. For the ^{16}O compound there is clear evidence for the opening of an electronic gap in the normal state at T^{*}≈170 K far above T_{c}=79K. Upon oxygen isotope substitution ( ^{16}O vs ^{18}O) T_{c} decreases marginally to 78.5 K, whereas T^{*} is shifted to about 220 K. This huge isotope shift observed for T^{*} which is absent in NMR and NQR experiments suggests that the mechanism leading to an isotope effect on the pseudogap has to involve a time scale in the range 10^{-8}≫τ>10^{-13}s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...