Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 532: 7-11, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23127855

RESUMO

Cardiovascular (CV) diseases are known to have a negative impact on the brain and neurocognition, and contribute to the development of vascular dementia and neurodegenerative diseases such as Alzheimer's disease (AD). Among CV diseases, congestive heart failure (CHF) after myocardial infarction (MI) is a condition where the ability of the left ventricle to eject blood to the circulation is impaired. As a consequence, CHF triggers inflammation and results in reduced cerebral blood flow which are considered among the risk factors for development of AD. However, biochemical alterations in the brain following MI and CHF remain unknown. To address this issue, we investigated microglia activation; levels of BACE1, the key rate-limiting enzyme involved in the pathogenesis of AD; and VEGF levels in the hippocampus and cortex following MI. We created MI by the ligation of the left anterior descending coronary artery in Sprague-Dawley male rats and collected brains either 3 days after MI (AMI) or 21 days after MI (CHF). We investigated microglia activation in AMI and CHF brains by immunohistochemistry and immunoblotting using macrophage/microglia marker Ionized calcium binding adaptor molecule 1 (Iba-1), and observed activated morphology of microglia in the cortex of rats in both AMI and CHF. We also showed the levels of BACE1 were increased in the cortex and hippocampus of CHF rats. To determine whether hypoxia occurs in the CHF brain, we assessed levels of VEGF in the hippocampus and cortex. Western blotting analysis showed up-regulation of VEGF in the hippocampus of CHF brains. These results suggest that neuroinflammation takes place secondary to myocardial infarction. In addition, CHF-induced hypoxia might play a role in the elevation of BACE1 and VEGF levels.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Microglia/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda
2.
Cardiovasc Res ; 87(1): 40-9, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20118202

RESUMO

AIMS: Cell-based therapy for myocardial infarction (MI) holds great promise; however, the ideal cell type and delivery system have not been established. Obstacles in the field are the massive cell death after direct injection and the small percentage of surviving cells differentiating into cardiomyocytes. To overcome these challenges we designed a novel study to deliver cardiac progenitor cells as a cell sheet. METHODS AND RESULTS: Cell sheets composed of rat or human cardiac progenitor cells (cardiospheres), and cardiac stromal cells were transplanted onto the infarcted myocardium after coronary artery ligation in rats. Three weeks later, transplanted cells survived, proliferated, and differentiated into cardiomyocytes (14.6 +/- 4.7%). Cell sheet transplantation suppressed cardiac wall thinning and increased capillary density (194 +/- 20 vs. 97 +/- 24 per mm(2), P < 0.05) compared with the untreated MI. Cell migration from the sheet was observed along the necrotic trails within the infarcted area. The migrated cells were located in the vicinity of stromal-derived factor (SDF-1) released from the injured myocardium, and about 20% of these cells expressed CXCR4, suggesting that the SDF-1/CXCR4 axis plays, at least, a role in cell migration. Transplantation of cell sheets resulted in a preservation of cardiac contractile function after MI, as was shown by a greater ejection fraction and lower left ventricular end diastolic pressure compared with untreated MI. CONCLUSION: The scaffold-free cardiosphere-derived cell sheet approach seeks to efficiently deliver cells and increase cell survival. These transplanted cells effectively rescue myocardium function after infarction by promoting not only neovascularization but also inducing a significant level of cardiomyogenesis.


Assuntos
Desenvolvimento Muscular , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/transplante , Regeneração , Transplante de Células-Tronco , Função Ventricular Esquerda , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Masculino , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Volume Sistólico , Células Estromais/transplante , Fatores de Tempo , Pressão Ventricular , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...