Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crop Prot ; 158: 106017, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35923211

RESUMO

Cassava plays a key role in the food security and economy of Cameroon, but its production is constrained by cassava mosaic disease (CMD). However, comprehensive surveys of CMD in Cameroon have been lacking. This study aimed at evaluating the current status of CMD and its whitefly vector. Field surveys were conducted in 2020 using a sampling, diagnostics and data storage protocol that has been harmonized across 10 West and Central African countries for ease of comparison. Thirty plants per field were assessed for CMD severity, whitefly abundance and source of infection. Surveys were conducted in 343 fields and confirmed the presence of CMD in all 10 regions of Cameroon. Among the 10,057 assessed plants, 33.07% were deemed healthy (asymptomatic). At the field level, only 6.7% fields were found to be healthy. The mean CMD incidence across the country was 66.93%, and the mean severity score was 2.28. The main mode of infection was likely through contaminated cuttings. The mean whitefly count per plant was 5.78. This study is the first countrywide survey of CMD in Cameroon and provides insights that can be useful for improving the country's CMD intervention and management strategies.

2.
J Mol Evol ; 89(7): 448-457, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142199

RESUMO

The Nubian ibex (Capra nubiana) is a wild goat species that inhabits the Sahara and Arabian deserts and is adapted to extreme ambient temperatures, intense solar radiation, and scarcity of food and water resources. To investigate desert adaptation, we explored the possible role of copy number variations (CNVs) in the evolution of Capra species with a specific focus on the environment of Capra nubiana. CNVs are structural genomic variations that have been implicated in phenotypic differences between species and could play a role in species adaptation. CNVs were inferred from Capra nubiana sequence data relative to the domestic goat reference genome using read-depth approach. We identified 191 CNVs overlapping with protein-coding genes mainly involved in biological processes such as innate immune response, xenobiotic metabolisms, and energy metabolisms. We found copy number variable genes involved in defense response to viral infections (Cluster of Differentiation 48, UL16 binding protein 3, Natural Killer Group 2D ligand 1-like, and Interferon-induced transmembrane protein 3), possibly suggesting their roles in Nubian ibex adaptations to viral infections. Additionally, we found copy number variable xenobiotic metabolism genes (carboxylesterase 1, Cytochrome P450 2D6, Glutathione S-transferase Mu 4, and UDP Glucuronosyltransferase-2B7), which are probably an adaptation of Nubian ibex to desert diets that are rich in plant secondary metabolites. Collectively, this study's results advance our understanding of CNVs and their possible roles in the adaptation of Nubian ibex to its environment. The copy number variable genes identified in Nubian ibex could be considered as subjects for further functional characterizations.


Assuntos
Variações do Número de Cópias de DNA , Cabras , Animais , Variações do Número de Cópias de DNA/genética , Genoma/genética , Cabras/genética
3.
Toxins (Basel) ; 13(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799626

RESUMO

Multiple mycotoxins were tested in milled rice samples (n = 200) from traders at different milling points within the Mwea Irrigation Scheme in Kenya. Traders provided the names of the cultivar, village where paddy was cultivated, sampling locality, miller, and month of paddy harvest between 2018 and 2019. Aflatoxin, citrinin, fumonisin, ochratoxin A, diacetoxyscirpenol, T2, HT2, and sterigmatocystin were analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Deoxynivalenol was tested using enzyme-linked immunosorbent assay (ELISA). Mycotoxins occurred in ranges and frequencies in the following order: sterigmatocystin (0-7 ppb; 74.5%), aflatoxin (0-993 ppb; 55.5%), citrinin (0-9 ppb; 55.5%), ochratoxin A (0-110 ppb; 30%), fumonisin (0-76 ppb; 26%), diacetoxyscirpenol (0-24 ppb; 20.5%), and combined HT2 + T2 (0-62 ppb; 14.5%), and deoxynivalenol was detected in only one sample at 510 ppb. Overall, low amounts of toxins were observed in rice with a low frequency of samples above the regulatory limits for aflatoxin, 13.5%; ochratoxin A, 6%; and HT2 + T2, 0.5%. The maximum co-contamination was for 3.5% samples with six toxins in different combinations. The rice cultivar, paddy environment, time of harvest, and millers influenced the occurrence of different mycotoxins. There is a need to establish integrated approaches for the mitigation of mycotoxin accumulation in the Kenyan rice.


Assuntos
Ração Animal/microbiologia , Produtos Agrícolas/microbiologia , Microbiologia de Alimentos , Fungos/metabolismo , Micotoxinas/análise , Oryza/microbiologia , Animais , Cromatografia Líquida de Alta Pressão , Produtos Agrícolas/crescimento & desenvolvimento , Estudos Transversais , Manipulação de Alimentos , Humanos , Quênia , Micotoxinas/efeitos adversos , Oryza/crescimento & desenvolvimento , Medição de Risco , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Plant Pathol ; 70(9): 2207-2216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35873883

RESUMO

Surveys were conducted in 2016 and 2017 across the main cassava-growing regions of Burkina Faso to assess the status of cassava mosaic disease (CMD) and to determine the virus strains causing the disease, using field observation and phylogenetic analysis. CMD incidence varied between regions and across years but was lowest in Hauts-Bassins (6.0%, 2016 and 5.4%, 2017) and highest in Centre-Sud (18.5%, 2016) and in Boucle du Mouhoun (51.7%, 2017). The lowest CMD severity was found in Est region (2.0) for both years and the highest in Sud-Ouest region (3.3, 2016) and Centre-Sud region (2.8, 2017). The CMD infection was primarily associated with contaminated cuttings in all regions except in Hauts-Bassins, where whitefly-borne infection was higher than cuttings-borne infection in 2016. PCR screening of 687 samples coupled with sequence analysis revealed the presence of African cassava mosaic-like (ACMV-like) viruses and East African cassava mosaic-like (EACMV-like) viruses as single infections at 79.5% and 1.1%, respectively. Co-infections of ACMV-like and EACMV-like viruses were detected in 19.4% of the tested samples. In addition, 86.7% of the samples positive for EACMV-like virus were found to be positive for East African cassava mosaic Cameroon virus (EACMCMV). Phylogenetic analysis revealed the segregation of cassava mosaic geminiviruses (CMGs) from Burkina Faso into three clades specific to ACMV, African cassava mosaic Burkina Faso virus (ACMBFV), and EACMCMV, confirming the presence of these viruses. The results of this study show that EACMCMV occurrence may be more prevalent in Burkina Faso than previously thought.

5.
New Phytol ; 230(1): 46-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33202061

RESUMO

Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.


Assuntos
Arabidopsis , Orobanchaceae , Striga , Animais , Arabidopsis/genética , Interações Hospedeiro-Parasita , Orobanchaceae/genética , Raízes de Plantas
6.
Front Plant Sci ; 11: 613772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381144

RESUMO

Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) are important pathogens of common bean (Phaseolus vulgaris), a crop vital for food security in sub-Saharan Africa. These viruses are vectored by aphids non-persistently, with virions bound loosely to stylet receptors. These viruses also manipulate aphid-mediated transmission by altering host properties. Virus-induced effects on host-aphid interactions were investigated using choice test (migration) assays, olfactometry, and analysis of insect-perceivable volatile organic compounds (VOCs) using gas chromatography (GC)-coupled mass spectrometry, and GC-coupled electroantennography. When allowed to choose freely between infected and uninfected plants, aphids of the legume specialist species Aphis fabae, and of the generalist species Myzus persicae, were repelled by plants infected with BCMV, BCMNV, or CMV. However, in olfactometer experiments with A. fabae, only the VOCs emitted by BCMNV-infected plants repelled aphids. Although BCMV, BCMNV, and CMV each induced distinctive changes in emission of aphid-perceivable volatiles, all three suppressed emission of an attractant sesquiterpene, α-copaene, suggesting these three different viruses promote migration of virus-bearing aphids in a similar fashion.

7.
Virus Res ; 277: 197845, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31874210

RESUMO

Aphids vector many plant viruses in a non-persistent manner i.e., virus particles bind loosely to the insect mouthparts (stylet). This means that acquisition of virus particles from infected plants, and inoculation of uninfected plants by viruliferous aphids, are rapid processes that require only brief probes of the plant's epidermal cells. Virus infection alters plant biochemistry, which causes changes in emission of volatile organic compounds and altered accumulation of nutrients and defence compounds in host tissues. These virus-induced biochemical changes can influence the migration, settling and feeding behaviours of aphids. Working mainly with cucumber mosaic virus and several potyviruses, a number of research groups have noted that in some plants, virus infection engenders resistance to aphid settling (sometimes accompanied by emission of deceptively attractive volatiles, that can lead to exploratory penetration by aphids without settling). However, in certain other hosts, virus infection renders plants more susceptible to aphid colonisation. It has been suggested that induction of resistance to aphid settling encourages transmission of non-persistently transmitted viruses, while induction of susceptibility to settling retards transmission. However, recent mathematical modelling indicates that both virus-induced effects contribute to epidemic development at different scales. We have also investigated at the molecular level the processes leading to induction, by cucumber mosaic virus, of feeding deterrence versus susceptibility to aphid infestation. Both processes involve complex interactions between specific viral proteins and host factors, resulting in manipulation or suppression of the plant's immune networks.


Assuntos
Afídeos/virologia , Interações Hospedeiro-Patógeno/fisiologia , Modelos Teóricos , Doenças das Plantas/virologia , Vírus de Plantas/genética , Viroses/transmissão , Animais , Afídeos/fisiologia , Comportamento Alimentar , Insetos Vetores/fisiologia , Vírus de Plantas/fisiologia , Plantas/química , Compostos Orgânicos Voláteis/metabolismo
8.
Curr Biol ; 29(20): R1064-R1065, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31639345
9.
Curr Biol ; 29(18): 3041-3052.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31522940

RESUMO

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.


Assuntos
Interações Hospedeiro-Parasita/genética , Striga/genética , Animais , Evolução Biológica , Evolução Molecular , Transferência Genética Horizontal/genética , Germinação , Orobanchaceae/genética , Parasitos/genética , Parasitos/metabolismo , Raízes de Plantas , Sementes , Simbiose
10.
Plant Physiol ; 179(4): 1796-1809, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670602

RESUMO

Striga species are parasitic weeds that seriously constrain the productivity of food staples, including cereals and legumes, in Sub-Saharan Africa and Asia. In eastern and central Africa, Striga spp. infest as much as 40 million hectares of smallholder farmland causing total crop failure during severe infestation. As the molecular mechanisms underlying resistance are yet to be elucidated, we undertook a comparative metabolome study using the Striga-resistant rice (Oryza sativa) cultivar 'Nipponbare' and the susceptible cultivar 'Koshihikari'. We found that a number of metabolites accumulated preferentially in the Striga-resistant cultivar upon Striga hermonthica infection. Most apparent was increased deposition of lignin, a phenylpropanoid polymer mainly composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) aromatic units, around the site of interaction in Nipponbare. The increased deposition of lignin was accompanied by induction of the expression of corresponding enzyme-encoding genes in the phenylpropanoid pathway. In addition, perturbing normal lignin composition by knocking down or overexpressing the genes that regulate lignin composition, i.e. p-COUMARATE 3-HYDROXYLASE or FERULATE 5-HYDROXYLASE, enhanced susceptibility of Nipponbare to S hermonthica infection. These results demonstrate that enhanced lignin deposition and maintenance of the structural integrity of lignin polymers deposited at the infection site are crucial for postattachment resistance against S hermonthica.


Assuntos
Interações Hospedeiro-Parasita/genética , Lignina/química , Oryza/genética , Striga/fisiologia , Lignina/genética , Oryza/parasitologia , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia
11.
Front Plant Sci ; 10: 1811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082355

RESUMO

Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) cause serious epidemics in common bean (Phaseolus vulgaris), a vital food security crop in many low-to-medium income countries, particularly in Sub-Saharan Africa. Aphids transmit these viruses "non-persistently," i.e., virions attach loosely to the insects' stylets. Viruses may manipulate aphid-host interactions to enhance transmission. We used direct observation and electrical penetration graph measurements to see if the three viruses induced similar or distinct changes in feeding behaviors of two aphid species, Aphis fabae and Myzus persicae. Both aphids vector BCMV, BCMNV, and CMV but A. fabae is a legume specialist (the dominant species in bean fields) while M. persicae is a generalist that feeds on and transmits viruses to diverse plant hosts. Aphids of both species commenced probing epidermal cells (behavior optimal for virus acquisition and inoculation) sooner on virus-infected plants than on mock-inoculated plants. Infection with CMV was especially disruptive of phloem feeding by the bean specialist aphid A. fabae. A. fabae also experienced mechanical stylet difficulty when feeding on virus-infected plants, and this was also exacerbated for M. persicae. Overall, feeding on virus-infected host plants by specialist and generalist aphids was affected in different ways but all three viruses induced similar effects on each aphid type. Specifically, non-specialist (M. persicae) aphids encountered increased stylet difficulties on plants infected with BCMV, BCMNV, or CMV, whereas specialist aphids (A. fabae) showed decreased phloem ingestion on infected plants. Probing and stylet pathway activity (which facilitate virus transmission) were not decreased by any of the viruses for either of the aphid species, except in the case of A. fabae on CMV-infected bean, where these activities were increased. Overall, these virus-induced changes in host-aphid interactions are likely to enhance non-persistent virus transmission, and data from this work will be useful in epidemiological modeling of non-persistent vectoring of viruses by aphids.

12.
Front Microbiol ; 9: 2939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581419

RESUMO

Two closely related potyviruses, bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV), are regarded as major constraints on production of common bean (Phaseolus vulgaris L.) in Eastern and Central Africa, where this crop provides a high proportion of dietary protein as well as other nutritional, agronomic, and economic benefits. Previous studies using antibody-based assays and indicator plants indicated that BCMV and BCMNV are both prevalent in bean fields in the region but these approaches cannot distinguish between these potyviruses or detect other viruses that may threaten the crop. In this study, we utilized next generation shotgun sequencing for a metagenomic examination of viruses present in bean plants growing at two locations in Kenya: the University of Nairobi Research Farm in Nairobi's Kabete district and at sites in Kirinyaga County. RNA was extracted from leaves of bean plants exhibiting apparent viral symptoms and sequenced on the Illumina MiSeq platform. We detected BCMNV, cucumber mosaic virus (CMV), and Phaseolus vulgaris alphaendornaviruses 1 and 2 (PvEV1 and 2), with CMV present in the Kirinyaga samples. The CMV strain detected in this study was most closely related to Asian strains, which suggests that it may be a recent introduction to the region. Surprisingly, and in contrast to previous surveys, BCMV was not detected in plants at either location. Some plants were infected with PvEV1 and 2. The detection of PvEV1 and 2 suggests these seed transmitted viruses may be more prevalent in Eastern African bean germplasm than previously thought.

13.
Plant Physiol ; 168(3): 1152-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025049

RESUMO

The root hemiparasite witchweed (Striga spp.) is a devastating agricultural pest that causes losses of up to $1 billion US annually in sub-Saharan Africa. Development of resistant crops is one of the cost-effective ways to address this problem. However, the molecular mechanisms underlying resistance are not well understood. To understand molecular events upon Striga spp. infection, we conducted genome-scale RNA sequencing expression analysis using Striga hermonthica-infected rice (Oryza sativa) roots. We found that transcripts grouped under the Gene Ontology term defense response were significantly enriched in up-regulated differentially expressed genes. In particular, we found that both jasmonic acid (JA) and salicylic acid (SA) pathways were induced, but the induction of the JA pathway preceded that of the SA pathway. Foliar application of JA resulted in higher resistance. The hebiba mutant plants, which lack the JA biosynthesis gene allene oxide cyclase, exhibited severe S. hermonthica susceptibility. The resistant phenotype was recovered by application of JA. By contrast, the SA-deficient NahG rice plants were resistant against S. hermonthica, indicating that endogenous SA is not required for resistance. However, knocking down WRKY45, a regulator of the SA/benzothiadiazole pathway, resulted in enhanced susceptibility. Interestingly, NahG plants induced the JA pathway, which was down-regulated in WRKY45-knockdown plants, linking the resistant and susceptible phenotypes to the JA pathway. Consistently, the susceptibility phenotype in the WRKY45-knockdown plants was recovered by foliar JA application. These results point to a model in which WRKY45 modulates a cross talk in resistance against S. hermonthica by positively regulating both SA/benzothiadiazole and JA pathways.


Assuntos
Resistência à Doença , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Striga/fisiologia , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Mutação/genética , Oryza/parasitologia , Oxilipinas/farmacologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/farmacologia
14.
Brief Funct Genomics ; 14(4): 275-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700082

RESUMO

Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research.


Assuntos
Plantas/genética , RNA de Plantas/genética , Transcriptoma , Interações Hospedeiro-Parasita , Fotossíntese
15.
Plant Cell Physiol ; 53(6): 1017-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492233

RESUMO

Rhizoctonia solani Kuhn causes sheath blight disease in rice, and genetic resistance against it is the most desirable characteristic. Current improvement efforts are based on analysis of polygenic quantitative trait loci (QTLs), but interpretation is limited by the lack of information on the changes in metabolic pathways. Our previous studies linked activation of the glycolytic pathway to enhanced generation of lignin in the phenylpropanoid pathway. The current studies investigated the regulation of glycolysis by examining the time course of changes in enzymatic activities and metabolite contents. The results showed that the activities of all glycolytic enzymes as well as fructose-6-phosphate (F-6-P), fructose-1,6-bisphosphate (F-1,6-P(2)), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate (GAP), 3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP) and pyruvate contents increased. These results combined with our previous findings that the expression of phosphoglucomutase (PGM), triosephosphate isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase and pyruvate kinase (PK) increased after infection suggested that the additional establishment of glycolysis in the cytosol compartment occurred after infection. Further evidence for this was our recent findings that the increase in expression of the 6-phosphofructokinase (PFK) plastid isozyme Os06g05860 was accompanied by an increase in expression of three cytosolic PFK isozymes, i.e. Os01g09570, Os01g53680 and Os04g39420, as well as pyrophosphate-dependent phosphofrucokinase (PFP) isozymes Os08g25720 (α-subunit) and Os06g13810 (ß-subunit) in infected rice plants of the resistant line. The results also showed that the reactions catalysed by PFK/PFP, aldolase, GAPDH + phosphoglycerate kinase (PGK) and PK in leaf sheaths of R. solani-infected rice plants were non-equilibrium reactions in vivo. This study showed that PGM, phosphoglucose isomerase (PGI), TPI and phosphoglycerate mutase (PGmu) + enolase could be regulated through coarse control whereas, PFK/PFP, aldolase, GAPDH + PGK and PK could be regulated through coarse and fine controls simultaneously.


Assuntos
Glicólise , Interações Hospedeiro-Patógeno , Oryza/enzimologia , Rhizoctonia/patogenicidade , Citosol/enzimologia , Citosol/metabolismo , Fosfato de Di-Hidroxiacetona/genética , Fosfato de Di-Hidroxiacetona/metabolismo , Resistência à Doença , Ativação Enzimática , Frutosedifosfatos/genética , Frutosedifosfatos/metabolismo , Frutosefosfatos/genética , Frutosefosfatos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Gliceraldeído 3-Fosfato/genética , Gliceraldeído 3-Fosfato/metabolismo , Peróxido de Hidrogênio/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Fosfoenolpiruvato/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Pirúvico/metabolismo , Locos de Características Quantitativas , Rhizoctonia/imunologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...