Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Genomics ; 2021: 7016712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532486

RESUMO

Sorghum (Sorghum bicolor (L.) Moench) is an important food crop in semi-arid tropics. The crop grain yield ranges from 0.5 t/ha to 0.8 t/ha compared to potential yields of 10 t/ha. The African stem borer Busseola fusca Fuller (Noctuidae) and the spotted stem borer Chilo partellus Swinhoe (Crambidae), are among the most economically important insect pests of sorghum. The two borers can cause 15% - 80% grain yield loss in sorghum. Mapping of QTLs associated with resistance traits to the two stem borers is important towards marker-assisted breeding. The objective of this study was to map QTLs associated with resistance traits to B. fusca and C. partellus in sorghum. 243 F9:10 sorghum RILs derived from ICSV 745 (S) and PB 15520-1 (R) were selected for the study with 4,955 SNP markers. The RILs were evaluated in three sites. Data was collected on leaf feeding, deadheart, exit holes, stem tunnels, leaf toughness, seedling vigour, bloom waxiness, and leaf glossiness. ANOVA for all the traits was done using Genstat statistical software. Insect damage traits and morphological traits were correlated using Pearson's correlation coefficients. Genetic mapping was done using JoinMap 4 software, while QTL analysis was done using PLABQTL software. A likelihood odds ratio (LOD) score of 3.0 was used to declare linkage. Joint analyses across borer species and sites revealed 4 QTLs controlling deadheart formation; 6 controlling leaf feeding damage; 5 controlling exit holes and stem tunneling damages; 2 controlling bloom waxiness, leaf glossiness, and seedling vigour; 4 conditioning trichome density; and 6 conditioning leaf toughness. Joint analyses for B. fusca and C. partellus further revealed that marker CS132-2 colocalised for leaf toughness and stem tunneling traits on QTLs 1 and 2, respectively; thus, the two traits can be improved using the same linked marker. This study recommended further studies to identify gene(s) underlying the mapped QTLs.

2.
Biochem Res Int ; 2020: 8861798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489377

RESUMO

Essential oils are secondary metabolites that plants produce for protection from pests and predators, attraction of pollinators, and seed dispersal. The oils are made up of a mixture of compounds that give a characteristic flavour and odour. Currently, essential oils are receiving great attention in research for their phytochemical and antimicrobial activities. However, there is scanty information on the chemical composition of many plants. This study provides a detailed analysis of the chemical composition of essential oils of ginger, garlic, tick berry, and Mexican marigold in Kenya. The essential oils were extracted by steam distillation and analysed by gas chromatography-mass spectrometry. The study identified a total of 52 different chemical classes from the essential oils of the four different plants that were analysed. Their percentage composition was also found to vary between the test plants. The essential oils of Mexican marigold constituted the highest composition of the identified chemical classes at 71.2%, followed by ginger at 55.8%, while both tick berry and garlic oils constituted 53.8% of the total classes identified. Terpenes constituted the highest composition in the essential oils of all the four test plants. Other major chemical classes included esters, ketones, organosulfurs, alkanes, cycloalkanes, steroids, aromatic hydrocarbons, and alkanols. Some of these chemical compounds have been shown to have a huge utility potential in biopesticides, pharmaceutical, and food industries, and hence, their industrial extraction and purification from the essential oils of these plants are recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...