Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 20(3): 332-343, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459780

RESUMO

The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.


Assuntos
Fracionamento Celular/métodos , Exossomos/metabolismo , Nanopartículas , Neoplasias/metabolismo , Proteínas/metabolismo , Animais , Biomarcadores/metabolismo , DNA/genética , DNA/metabolismo , Metabolismo Energético , Exossomos/classificação , Exossomos/genética , Exossomos/patologia , Feminino , Glicômica , Glicosilação , Células HCT116 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Fenótipo , Proteômica , RNA/genética , RNA/metabolismo , Transdução de Sinais , Distribuição Tecidual
2.
BMC Cancer ; 15: 311, 2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25907971

RESUMO

BACKGROUND: Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. METHODS: In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. RESULTS: Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. CONCLUSIONS: Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context.


Assuntos
Frequência do Gene , Receptores Notch/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Genes Essenciais , Humanos , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...