Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(5): 28, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767908

RESUMO

Purpose: To determine whether development of neuromuscular junctions (NMJs) differs between extraocular muscles (EOMs) and other skeletal muscles. Methods: Mouse EOMs, diaphragm, and tibialis anterior (TA) were collected at postnatal day (P)0, P3, P7, P10, P14, and P21, and 12 weeks. Whole muscles were stained with α-bungarotoxin, anti-neurofilament antibody, and slow or fast myosin heavy chain antibody, and imaged with a confocal microscope. Images were quantified using Imaris software. Results: NMJs in the EOMs show a unique pattern of morphological development compared to diaphragm and TA. At P0, diaphragm and TA NMJs were oval plaques; EOM single NMJs were long, thin rods. NMJs in the three muscle types progress to mature morphology at different rates. At all ages, EOM single NMJs were larger, especially relative to myofiber size. The inferior oblique and inferior rectus muscles show delayed single NMJ development compared to other EOMs. NMJs on multiply-innervated fibers in the EOMs vary widely in size, and there were no consistent differences between muscles or over time. Incoming motor nerves formed complex branching patterns, dividing first into superficial and deep branches, each of which branched extensively over the full width of the muscle. Motor axons that innervate multiply-innervated fibers entered the muscle with the axons that innervate singly-innervated fibers, then extended both proximally and distally. EOM NMJs had more subsynaptic nuclei than skeletal muscle NMJs throughout development. Conclusions: EOMs show a unique pattern of NMJ development and have more subsynaptic nuclei than other muscles, which may contribute to the exquisite control of eye movements.


Assuntos
Microscopia Confocal , Músculo Esquelético , Junção Neuromuscular , Músculos Oculomotores , Animais , Músculos Oculomotores/inervação , Músculos Oculomotores/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo , Animais Recém-Nascidos , Feminino
2.
Invest Ophthalmol Vis Sci ; 63(10): 4, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083589

RESUMO

Purpose: To determine if extraocular muscles (EOMs) from mice with nystagmus show abnormalities in myofiber composition and innervation, as seen in EOMs from human nystagmus patients, and to determine when in development those changes occur. Methods: Balb/c albino mice were crossed to pigmented mice to generate heterozygous mice, which were mated to create experimental litters containing albinos and wild-type controls. Orbits were harvested from adult animals (12 weeks old); on postnatal day (P)0, P10, P14, and P21; and from 6-week-old animals. EOM sections were collected from the intraorbital portion of the muscles. Sections were immunostained for slow and fast myosin and for neuromuscular junctions (NMJs). The proportion of each myofiber subtype and the density and size of NMJs were quantified. Initial innervation patterns were assessed using whole-mount immunostaining of embryonic day (E)13.5 embryos expressing IslMN:GFP. Results: Adult albino EOMs display an increased proportion of slow myofibers, larger slow myofibers, and a decreased density of NMJs-similar to human nystagmus patients. The percentage of NMJs on slow myofibers is also lower in albino animals. The initial innervation pattern of the incoming ocular motor neurons is normal in E13.5 albino embryos. Differences in the proportion of slow and fast myofiber subtypes are present as early as P14, and a lower percentage of NMJs on slow myofibers is present by P21. There is a lower density of NMJs on albino EOMs as early as P10, prior to eye opening. Conclusions: Changes in NMJ development observed before eye opening indicate that nystagmus is not solely secondary to poor vision.


Assuntos
Nistagmo Patológico , Músculos Oculomotores , Adulto , Animais , Modelos Animais de Doenças , Olho , Humanos , Camundongos , Neurônios Motores , Junção Neuromuscular , Músculos Oculomotores/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...