Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 289: 110215, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623776

RESUMO

14-3-3 proteins are a family of conserved proteins present in eukaryotes as several isoforms, playing a regulatory role in many cellular and physiological processes. In plants, 14-3-3 proteins have been reported to be involved in the response to stress conditions, such as drought, salt and cold. In the present study, 14-3-3ε and 14-3-3ω isoforms, which were representative of ε and non-ε phylogenetic groups, were overexpressed in Arabidopsis thaliana plants; the effect of their overexpression was investigated on H+-ATPase activation and plant response to cold stress. Results demonstrated that H+-ATPase activity was increased in 14-3-3ω-overexpressing plants, whereas overexpression of both 14-3-3 isoforms brought about cold stress tolerance, which was evaluated through ion leakage, lipid peroxidation, osmolyte synthesis, and ROS production assays. A dedicated tandem mass tag (TMT)-based proteomic analysis demonstrated that different proteins involved in the plant response to cold or oxidative stress were over-represented in 14-3-3ε-overexpressing plants.


Assuntos
Proteínas 14-3-3/genética , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Proteínas 14-3-3/metabolismo , Aclimatação/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Plant Physiol Biochem ; 108: 328-336, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27497302

RESUMO

Low temperature is an environmental stress that greatly influences plant performance and distribution. Plants exposed to cold stress exhibit modifications of plasma membrane physical properties that can affect their functionality. Here it is reported the effect of low temperature exposure of Arabidopsis plants on the activity of phospholipase D and H+-ATPase, the master enzyme located at the plasma membrane. The H+-ATPase activity was differently affected, depending on the length of cold stress imposed. In particular, an exposure to 4 °C for 6 h determined the strong inhibition of the H+-ATPase activity, that correlates with a reduced association with the regulatory 14-3-3 proteins. A longer exposure first caused the full recovery of the enzymatic activity followed by a significant activation, in accordance with both the increased association with 14-3-3 proteins and induction of H+-ATPase gene transcription. Different time lengths of cold stress treatment were also shown to strongly stimulate the phospholipase D activity and affect the phosphatidic acid levels of the plasma membranes. Our results suggest a functional correlation between the activity of phospholipase D and H+-ATPase mediated by phosphatidic acid release during the cold stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Resposta ao Choque Frio/fisiologia , Fosfolipase D/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas 14-3-3/metabolismo , Adaptação Fisiológica , Temperatura Baixa , Diglicerídeos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...