Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 41(27): 8261-9, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22622189

RESUMO

Crystalline materials have been synthesized in reactions of titanium(iv) tetraisobutoxide with branched organic acids (HOOCR', R' = CMe(2)Et, (t)Bu, CH(2)(t)Bu) in the molar ratio 1:1 at room temperature under Ar atmosphere. Particular attention has been paid to the structural and spectral characterization of metastable intermediate complexes of general formula [Ti(7)O(9)(O(i)Bu)(4)(HO(i)Bu)(OOCCMe(2)Et)(6)](2) (1) and [Ti(6)O(5)(O(i)Bu)(6)(OOC(t)Bu)(8)] (3), and their conversion towards more structurally stable compounds [Ti(6)O(6)(O(i)Bu)(6)(OOCC(Me)(2)Et)(6)] (2) and [Ti(6)O(6)(H(2)O)(2)(O(i)Bu)(6)(OOC(t)Bu)(6)] (4). The hexanuclear structure of (5) ([Ti(6)O(6)(O(i)Bu)(6)(OOCCH(2)(t)Bu)(6)]) has been postulated on the basis of IR and (13)C NMR spectroscopic data analysis. The possible reaction pathways which may occur during the formation of the above mentioned compounds are also discussed.


Assuntos
Ácidos/química , Complexos de Coordenação/química , Titânio/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrofotometria Infravermelho
2.
Acta Biochim Pol ; 48(4): 877-84, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11995998

RESUMO

The crystal structure of rat transthyretin (rTTR) complex with 3,5,3',5'-tetraiodothyroacetic acid (T4Ac) was determined at 1.8 A resolution with low temperature synchrotron data collected at CHESS. The structure was refined to R = 0.207 and Rfree = 0.24 with the use of 8-1.8 A data. The additional 8000 reflections from the incomplete 2.1-1.8 data shell, included in the refinement, reduced the Rfree index by 1.3%. Structure comparison with the model refined against the complete 8-2.1 A data revealed no differences in the ligand orientation and the conformation of the polypeptide chain in the core regions. However, the high-resolution data included in the refinement improved the model in the flexible regions poorly defined with the lower resolution data. Also additional sixteen water molecules were found in the difference map calculated with the extended data. The structure revealed both forward and reverse binding of tetraiodothyroacetic acid in one binding site and two modes of forward ligand binding in the second site, with the phenolic iodine atoms occupying different sets of the halogen binding pockets.


Assuntos
Pré-Albumina/química , Tiroxina/análogos & derivados , Tiroxina/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Ratos
3.
Acta Biochim Pol ; 48(4): 885-92, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11995999

RESUMO

The crystal structure of rat transthyretin (rTTR) complex with the dibromoflavone EMD21388 was determined to 2.3 A resolution and refined to R = 0.203 and Rfree = 0.288. Two different orientations of EMD21388, which differ in the channel penetration by 1.6 A, were found in the A/C binding site of rTTR. The single ligand position observed in the BID site is intermediate between the two positions found in the A/C site. The position of the dibromoflavone in the B/D site is similar to that reported for dibromoaurone in human TTR. The bromine atoms of EMD21388 form strong interactions in the P3 and P3' pockets of rTTR. Due to the different molecular architectures of both ligands, dibromoflavone forms only one interaction with Lys-15 near the channel entrance, while direct interactions with the pair of Lys-15 were reported for dibromoaurone. The C3* methyl group of EMD21388 mediates the bridging interactions between two TTR subunits in the P2 pockets. The interactions of the O2* hydroxyl group of dibromoaurone with the Thr-119 side chain in the P3 pockets are not matched by similar interactions in EMD21388. Both these alternative interactions can explain the competitive binding of 3',5'-dibromoflavonoids to transthyretin.


Assuntos
Flavonoides/química , Pré-Albumina/química , Pré-Albumina/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Elétrons , Humanos , Lisina/química , Modelos Moleculares , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...