Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(41): 14543-14555, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33048103

RESUMO

A set of three new Ru(ii) polypyridyl complexes decorated with 5-aryl tetrazolato ligands (R-CN4)-, (D series, namely D1, D3 and D4), is presented herein. Whereas complex D1 represents the pyrazinyl tetrazolato analogue of a previously reported Ru(ii) complex (D2) with the general formula cis-[(dcbpy)2Ru(N^N)]+, in which dcbpy is 2,2'-bipyridine-4,4'-dicarboxylic acid and N^N is the chelating 2-pyridyl tetrazolato anion, the design of the unprecedented Ru(ii) species D3 and D4 relied upon a completely different architecture. More specifically, the molecular structure of thiocyanate-based species cis-[(dcbpy)2Ru(NCS)2], that is typically found in benchmark Ru(ii) dyes for dye sensitized solar cell (DSSCs), was modified with the replacement of two of the -NCS ligands in favour of the introduction of 5-aryl tetrazolato anions, such as the deprotonated form of 5-(4-bromophenyl)-1H-tetrazole, for complex D3 and 5-(4-cyanophenyl)-1H-tetrazole in the case of complex D4. To streamline the behavior of the D series of Ru(ii) complexes as photosensitizers for DSSCs, an in-depth analysis of the excited state properties of D1, D3 and D4 was performed through TDDFT calculations and TDAS (nanosecond transient difference absorption spectroscopy). The obtained results highlight a trend that was confirmed once D1, D3 and D4 were tested as photosensitizers for DSSC under different conditions. Along the series of the Ru(ii) complexes, the neutrally charged species D3 and D4 displayed the best photovoltaic performances.

2.
Dalton Trans ; 44(47): 20597-608, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26554352

RESUMO

In order to exploit their potential as versatile luminescent sensors, four new Re(I)-tetrazolato complexes with the general formula fac-[Re(CO)3(diim)(L)], where diim is 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) and L(-) is either the anion 5-(2'-pyridyl)tetrazolato (2-PTZ(-)) or 5-(2'-quinolyl)tetrazolato (2-QTZ(-)), were prepared and fully characterized. In all cases, the regioselective coordination of the Re(I) center through the N2 atom of the tetrazolato ring was observed. This particular feature ensures the availability of the diiminic (N^N) site that was systematically incorporated into the structure of the 2-PTZ(-) and 2-QTZ(-) ligands for further coordination with metal cations. Such a diimine-type coordination mode was preliminarily tested by using the mononuclear Re(I) complexes as N^N ligands for the preparation of two [(N^N)Cu(POP)] cationic species, where POP is the chelating diphosphine bis[2-(diphenylphosphino)phenyl]ether. The X-ray structures of the resulting Re(I)-Cu(I) dyads revealed that the Re(I) mononuclear complexes effectively behaved as chelating N^N ligands with respect to the [Cu(POP)](+) fragment, the coordination of which also resulted in significant modification of the Re(I)-centered luminescence. With these data in hand, the luminescent sensing abilities of the four new Re(I) tetrazolato complexes were screened with respect to divalent metal ions of toxicological and biological importance such as Zn(II), Cd(II) and Cu(II). The interaction of the Re(I) complexes with Zn(II) and Cd(II) was witnessed by the evident blue shift (Δλmax = 22-36 nm) of the emission maxima, which was also accompanied by a significant elongation of the emission lifetimes. On the contrary, the addition of the cupric ion caused substantial quenching of the radiative processes originating from the Re(I) luminophores.

3.
Dalton Trans ; 44(18): 8379-93, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25582581

RESUMO

The irreversible reaction of methyl triflate with neutral Re(I) tetrazolato complexes of the type fac-[Re(diim)(CO)3(L)], where diim is either 1,10-phenanthroline or 2,2'-bipyridine and L is a para substituted 5-aryltetrazolate, yielded the corresponding cationic methylated complexes. While methylation occurred regioselectively at the N4 position of the tetrazole ring, the cationic complexes were found to exist in solution as equilibrating mixtures of linkage isomers, where the Re(i) centre was bound to either the N1 or N2 atom of the tetrazole ring. The existence of these isomers was highlighted both by NMR and X-ray crystallography studies. On the other hand, the two isomers appeared indistinguishable by IR, UV-Vis and luminescence spectroscopy. The prepared cationic complexes are all brightly phosphorescent in fluid and rigid solutions, with emission originating from triplet metal-to-ligand charge transfer excited states. Compared to their neutral precursors, which emit from admixtures of triplet metal-to-ligand and ligand-to-ligand charge transfer states, the methylated complexes exhibit blue-shifted emission characterised by elongated excited state lifetimes and increased quantum yields. The nature of the excited states for both the neutral and the methylated complexes was probed by resonance Raman spectroscopy and with the aid of time-dependent density functional theory calculations. Lastly, both the neutral and the methylated species were used as emitting phosphors in the fabrication of Organic Light Emitting Diodes and Light Emitting Electrochemical Cells.

4.
Dalton Trans ; 44(1): 37-40, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25102831

RESUMO

The design of a relatively simple bifunctional ligand led to the obtainment of three new Ir(III)2-Eu(III) heterometallic complexes. Variation of the degree of fluorination in the cyclometalating ligands coordinated to the Ir(III) centres allows tuning of the photophysical properties and pure white light emission from a single complex.

5.
Inorg Chem ; 53(14): 7709-21, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25004160

RESUMO

Ir(III) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)2(CH3CN)2](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)2L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)2L2](+), with L = tert-butyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Electrochemical and photophysical studies, along with density functional theory calculations, allowed a comprehensive rationalization of the electronic properties of 1-5. In acetonitrile at 298 K, complexes equipped with bipyridine or phenanthroline ancillary ligands (1-3) exhibit intense and structureless emission bands centered at around 540 nm, with metal-to-ligand and ligand-to-ligand charge transfer (MLCT/LLCT) character; their photoluminescence quantum yields (PLQYs) are in the range of 55-70%. By contrast, the luminescence band of 5 is weak, structured, and blue-shifted and is attributed to a ligand-centered (LC) triplet state of the tetrazolate cyclometalated ligand. The PLQY of 4 is extremely low (<0.1%) since its lowest level is a nonemissive triplet metal-centered ((3)MC) state. In rigid matrix at 77 K, all of the complexes exhibit intense luminescence. Ligands 1-3 are also strong emitters in solid matrices at room temperature (1% poly(methyl methacrylate) matrix and neat films), with PLQYs in the range of 27-70%. Good quality films of 2 could be obtained to make light-emitting electrochemical cells that emit bright green light and exhibit a maximum luminance of 310 cd m(-2). Tetrazolate cyclometalated ligands push the emission of Ir(III) complexes to the blue, when compared to pyrazolate or triazolate analogues. More generally, among the cationic Ir(III) complexes without fluorine substituents on the cyclometalated ligands, 1-3 exhibit the highest-energy MLCT/LLCT emission bands ever reported.

6.
Inorg Chem ; 53(7): 3629-41, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24665819

RESUMO

A family of tricarbonyl Re(I) complexes of the formulation fac-[Re(CO)3(NHC)L] has been synthesized and characterized, both spectroscopically and structurally. The NHC ligand represents a bidentate N-heterocyclic carbene species where the central imidazole ring is substituted at the N3 atom by a butyl, a phenyl, or a mesityl group and substituted at the N1 atom by a pyridyl, a pyrimidyl, or a quinoxyl group. On the other hand, the ancillary L ligand alternates between chloro and bromo. For the majority of the complexes, the photophysical properties suggest emission from the lowest triplet metal-to-ligand charge transfer states, which are found partially mixed with triplet ligand-to-ligand charge transfer character. The nature and relative energy of the emitting states appear to be mainly influenced by the identity of the substituent on the N3 atom of the imidazole ring; thus, the pyridyl complexes have blue-shifted emission in comparison to the more electron deficient pyrimidyl complexes. The quinoxyl complexes show an unexpected blue-shifted emission, possibly occurring from ligand-centered excited states. No significant variations were found upon changing the substituent on the imidazole N3 atom and/or the ancillary ligand. The photochemical properties of the complexes have also been investigated, with only the complexes bound to the pyridyl-substituted NHC ligands showing photoinduced CO dissociation upon excitation at 370 nm, as demonstrated by the change in the IR and NMR spectra as well as a red shift in the emission profile after photolysis. Temperature-dependent photochemical experiments show that CO dissociation occurs at temperatures as low as 233 K, suggesting that the Re-C bond cleaves from excited states of metal-to-ligand charge transfer nature rather than thermally activated ligand field excited states. A photochemical mechanism that takes into account the reactivity of the complexes bound to the pyridyl-NHC ligand as well as the stability of those bound to the pyrimidyl- and quinoxyl-NHC ligands is proposed.

7.
Inorg Chem ; 53(1): 229-43, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24354312

RESUMO

One of the distinct features of metal-tetrazolate complexes is the possibility of performing electrophilic additions onto the imine-type nitrogens of the coordinated five-membered ring. These reactions, in particular, provide a useful tool for varying the main structural and electronic properties of the starting tetrazolate complexes. In this paper, we demonstrate how the use of a simple protonation-deprotonation protocol enables us to reversibly change, to a significant extent, the light-emission output and performance of a series of Re(I)-tetrazolate-based phosphors of the general formulation fac-[Re(N(∧)N)(CO)3L], where N(∧)N denotes diimine-type ligands such as 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and L represents a series of different 5-aryl tetrazolates. Indeed, upon addition of triflic acid to these neutral Re(I) complexes, a consistent blue shift (Δλmax ca. 50 nm) of the emission maximum is observed and the protonated species also display increased quantum yield values (4-13 times greater than the starting compounds) and longer decay lifetimes. This alteration can be reversed to the initial condition by further treating the protonated Re(I) complex with a base such as triethylamine. Interestingly, the reversible modulation of luminescent features by the same protonation-deprotonation mechanism appears as a quite general characteristic of photoactive metal tetrazolate complexes, even for compounds in which the 2-pyridyl tetrazolate ligands coordinate the metal center with a bidentate mode, such as the corresponding Ir(III) cyclometalates [Ir(C(∧)N)2L] and the Ru(II) polypyridyl derivatives [Ru(bpy)2L](+). In these cases, the protonation of the starting materials leads to red-shifted and more intense emissions for the Ir(III) complexes, while almost complete quenching is observed in the case of the Ru(II) analogues.

8.
Dalton Trans ; 42(39): 14100-14, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23939232

RESUMO

The photophysical and photochemical properties of the new tricarbonyl rhenium(I) complexes bound to N-heterocyclic carbene ligands (NHC), fac-[Re(CO)3(N^C)X] (N^C = 1-phenyl-3-(2-pyridyl)imidazole or 1-quinolinyl-3-(2-pyridyl)imidazole; X = Cl or Br), are reported. The photophysics of these complexes highlight phosphorescent emission from triplet metal-to-ligand ((3)MLCT) excited states, typical of tricarbonyl rhenium(I) complexes, with the pyridyl-bound species displaying a ten-fold shorter excited state lifetime. On the other hand, these pyridyl-bound species display solvent-dependent photochemical CO dissociation following what appear to be two different mechanisms, with a key step being the formation of cationic tricarbonyl solvato-complexes, being themselves photochemically active. The photochemical mechanisms are illustrated with a combination of NMR, IR, UV-Vis, emission and X-ray structural characterization techniques, clearly demonstrating that the presence of the NHC ligand is responsible for the previously unobserved photochemical behavior in other photoactive tricarbonyl rhenium(I) species. The complexes bound to the quinolinyl-NHC ligand (which possess a lower-energy (3)MLCT) are photostable, suggesting that the photoreactive excited state is not any longer thermally accessible. The photochemistry of the pyridyl complexes was investigated in acetonitrile solutions and also in the presence of triethylphosphite, showing a competing and bifurcated photoreactivity promoted by the trans effect of both the NHC and phosphite ligands.

9.
Dalton Trans ; 42(23): 8188-91, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661108

RESUMO

The reaction of 2-pyridyltetrazolate with [Re(CO)5X] (X = Cl, Br) yielded the formation of an unexpected cyclic metallacalix[3]arene, as revealed by X-ray structural studies, characterised by aqua emission and reversible three-electron oxidation.

10.
Dalton Trans ; 42(19): 6894-901, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23503743

RESUMO

Inorganic-organic hybrid materials combine the properties of both components providing functionality with a wide range of potential applications. Phase segregation of the inorganic and organic components is a common challenge in these systems, which is overcome here by copolymerizing a metal-free calixarene ionophore and methyl methacrylate. A lanthanoid ion is then added using a swelling-deswelling procedure. The resulting luminescent hybrid materials can be made to emit any required color, including white light, by loading with an appropriate mixture of lanthanoids. The gradation of the emitted color can also be finely adjusted by changing the excitation wavelength. The polymer monolith can be recycled to emit a different color by swelling with a solution containing a different lanthanoid ion. This methodology is flexible and has the potential to be extended to many different ionophores and polymer matrices.

11.
Dalton Trans ; 42(12): 4233-6, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23400310

RESUMO

The coordination of 2-pyridyltetrazolate and ortho-xylene-linked bis(NHC)cyclophane to Pt(II) yielded a novel complex characterised by enhanced pure deep-blue emission, whose intensity can be modulated via methylation of the tetrazole ring.


Assuntos
Complexos de Coordenação/química , Platina/química , Xilenos/química , Cloreto de Metileno/química , Piridinas/química , Teoria Quântica , Espectrofotometria
12.
Dalton Trans ; 42(4): 997-1010, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23108182

RESUMO

Four Cu(I) complexes with general formulas [Cu(N^N)(2)][BF(4)] and [(P^P)Cu(N^N)][BF(4)] were prepared, where N^N stands for 2-(2-tert-butyl-2H-tetrazol-5-yl)pyridine and P^P is a chelating diphosphine, namely bis-(diphenylphosphino)methane (dppm), bis-(diphenylphosphino)ethane (dppe) or bis[2-(diphenylphosphino)phenyl]ether (POP). In an acetonitrile medium, the Electro-Spray Ionization Mass Spectrometry (ESI-MS) determination provided the preliminary evidence for the occurrence of the dppm-containing complex as a mixture of a cationic mononuclear [Cu(N^N)(dppm)](+) species and a bis-cationic dinuclear [Cu(2)(N^N)(2)(dppm)(2)](2+)-type compound. Definitive evidence of peculiar structural features came from X-ray crystallography, which showed both the dppm- and, unexpectedly, the dppe-based heteroleptic compounds to crystallize as diphosphine-bridged Cu(I) dimers, unlike [Cu(N^N)(2)](+) and [(POP)Cu(N^N)](+) which are mononuclear species. In solutions of non-coordinating solvents, (31)P NMR studies at variable temperatures and dilution titrations confirmed that the dppm-based complex undergoes a monomer-dimer dynamic equilibrium, while the dppe-containing complex occurs as the bis-cationic dinuclear species, [Cu(2)(N^N)(2)(dppe)(2)](2+), within a concentration range comprised between 10(-2) and 10(-4) M. Differences among heteroleptic complexes might be related to the smaller natural bite angle displayed by dppm and dppe phosphine ligands (72° and 85°, respectively), with respect to that reported for POP (102°). The electrochemical features of the new species have been investigated by cyclic voltammetry. Despite the irreversible and complicated redox behaviour, which is typical for copper complexes, the reductions have been attributed to the tetrazole ligand whereas the oxidations are characterized as Cu(I/II) processes with a substantial contribution from the P^P-based ligands in the case of the heteroleptic species. All the four complexes are weakly or not luminescent in CH(2)Cl(2) solution, but heteroleptic complexes are bright green luminophores in a solid matrix, with quantum yields as high as 45% (dppm complex) even at room temperature. This makes them potential candidates as cheap emitting materials for electroluminescent devices.

13.
Dalton Trans ; 41(16): 4736-9, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22426382

RESUMO

p-t-Butylcalix[4]arene functionalised at the lower rim with two tetrazole moieties is found to be a useful receptor for lanthanoid cations. The luminescence of the resulting complexes can be controlled by addition of base, with emission achieved in the visible and infrared regions.

14.
Dalton Trans ; 40(44): 11960-7, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21983680

RESUMO

Two rhenium(I) carbonyl complexes of the type fac-[Re(CO)(3)(N^C)X] where N^C is an N-heterocyclic carbene [3-butyl-1-(2'-pyridyl)benzimidazolin-2-ylidene] and X is either Cl or Br have been synthesised via an in situ method from [Re(CO)(5)X] and a respective benzimidazolium salt. The complexes have been characterised by (1)H and (13)C NMR, infra-red spectroscopy and in the case of the bromo-complex by a single-crystal X-ray diffraction study. The photophysical properties of the complexes have been investigated, revealing similar phosphorescent emission which was attributed to radiative decay from a (3)MLCT state partially mixed with a (3)LLCT state. However, the analysis of excited state lifetime and quantum yield values revealed distinct photophysical behaviour for the two complexes, which was attributed to the more labile nature of the bromo ligand with respect to the chloro one. The explanation was supported by the time-dependent emission profile change in diluted acetonitrile solutions.

15.
Chem Commun (Camb) ; 47(13): 3876-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21336345

RESUMO

A novel methodology to prepare transparent luminescent hybrid materials is reported. Using a calixarene ionophore as a PMMA cross-linker avoids problems, such as phase segregation, and produces a polymer monolith that can be loaded with the metal ion required for luminescence post-synthesis. This approach is versatile and will simplify the production of such materials.

16.
Inorg Chem ; 50(4): 1229-41, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21268651

RESUMO

The synthesis, structural, and photophysical properties of a novel family of neutral fac-[Re(N(∧)N)(CO)(3)(L)] complexes, where N(∧)N is either 2,2'-bipyridine or 1,10-phenanthroline and L is a para functionalized 5-aryltetrazolate [namely, 5-phenyltetrazolate (Tph(-)), 4-(tetrazolate-5-yl)benzaldehyde (Tbdz(-)), 5-(4-acetylphenyl)tetrazolate (Tacy(-)), and methyl 4-(tetrazolate-5-yl)benzoate (Tmeb(-))] are reported. The complexes were prepared by direct addition of the corresponding tetrazolate anion to the acetonitrile solvated fac-[Re(N(∧)N)(CO)(3)](+) precursor. NMR data demonstrate that the coordination of the metal fragment is regiospecific at the N2 atom of the tetrazolate ring. These conclusions are also supported by X-ray structural determinations. Photophysical data were obtained in diluted and deaerated dichloromethane solutions displaying broad and structureless profiles with emission maxima ranging from 566 to 578 nm. The absorption profiles indicate the presence of higher energy intraligand (IL) π-π* transitions and lower energies ligand-to-ligand charge transfer (LLCT) and metal-to-ligand charge transfer (MLCT). As the last two transitions are mixed, they are better described as a metal-ligand-to-ligand charge transfer (MLLCT), a result that is also supported by density functional theory (DFT) calculations. The complexes show excited state lifetime values ranging from 102 to 955 ns, with associated quantum yield between 0.012 and 0.099. Compared to the parent neutral chloro or bromo [Re(N(∧)N)(CO)(3)X], the complexes show a slightly improved performance because of the π accepting nature of the tetrazolato ligand. The metal-to-ligand backbonding is in fact depleting the Re center of electron density, thus widening the HOMO-LUMO gap and reducing the non-radiative decay mechanism in accordance with the energy gap law. Finally, the electron-withdrawing or donating nature of the substituent on the phenyltetrazolato ligand allows the fine-tuning of the photophysical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...