Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22611, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046135

RESUMO

Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.

2.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36509392

RESUMO

Many studies have identified host-derived lipids, characterised by the abundance of cholesterol, as a major source of carbon nutrition for Mycobacterium tuberculosis during infection. Members of the Mycobacterium tuberculosis complex are biologically different with regards to degree of disease, host range, pathogenicity and transmission. Therefore, the current study aimed at elucidating transcriptome changes during early infection of pulmonary epithelial cells and on an in vitro cholesterol-rich minimal media, in M. tuberculosis clinical strains F15/LAM4/KZN and Beijing, and the laboratory H37Rv strain. Infection of pulmonary epithelial cells elicited the upregulation of fadD28 and hsaC in both the F15/LAM4/KZN and Beijing strains and the downregulation of several other lipid-associated genes. Growth curve analysis revealed F15/LAM4/KZN and Beijing to be slow growers in 7H9 medium and cholesterol-supplemented media. RNA-seq analysis revealed strain-specific transcriptomic changes, thereby affecting different metabolic processes in an in vitro cholesterol model. The differential expression of these genes suggests that the genetically diverse M. tuberculosis clinical strains exhibit strain-specific behaviour that may influence their ability to metabolise lipids, specifically cholesterol, which may account for phenotypic differences observed during infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Transcriptoma , Metabolismo dos Lipídeos , Lipídeos
3.
Dev Comp Immunol ; 65: 321-329, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27497873

RESUMO

Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies.


Assuntos
Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Pulmão/patologia , Mycobacterium tuberculosis/genética , Tuberculose/imunologia , Imunidade Adaptativa , Linhagem Celular , Células Epiteliais/imunologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/imunologia , Especificidade da Espécie , Transcriptoma , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...