Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050232

RESUMO

Today, packaging is an integral part of any food product, preserving its quality and safety. The use of biodegradable packaging as an alternative to conventional polymers reduces the consumption of synthetic polymers and their negative impacts on the environment. The purpose of this study was to analyze the properties of a biodegradable compound based on polylactide (PLA) and polybutylene adipate terephthalate (PBAT). Test samples were made by blown extrusion. The structural, physical, and mechanical properties of the PLA/PBAT material were studied. The property variations during compost storage in the lab were monitored for 365 days. The physical and mechanical properties were measured in accordance with the GOST 14236-2017 (ISO 527-2:2012) standard. We measured the tensile strength and elongation at rupture. We used attenuated total reflectance Fourier transform infrared microscopy (ATR-FTIR) to analyze the changes in the material structure. This paper presents a comparative analysis of the strengths of a biodegradable material and grade H polyethylene film (manufactured to GOST 10354-82). PLA/PBAT's longitudinal and transverse tensile strengths are 14.08% and 32.59% lower than those of LDPE, respectively. Nevertheless, the results indicate that, given its physical and mechanical properties, the PLA/PBAT material can be an alternative to conventional PE film food packaging. The structural study results are in good agreement with the physical and mechanical tests. Micrographs clearly show the surface deformations of the biodegradable material. They increase with the compost storage duration. The scanning microscopy (SEM) surface analysis of the original PLA/PBAT films indicated that the PLA structure is similar to that of a multilayer shell or sponge, which is visible at medium and especially high magnification. We conclude that PLA/PBAT-based biodegradable materials are potential substitutes for conventional PE polymer films.

2.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335428

RESUMO

The aspects of component visualization of the antimicrobial triterpenoids (betulin) additive, both on the surface and in the bulk of the polymer, constituting food film packaging, are considered. This paper presents new knowledge about the morphology and surface structure of modified films using three independent methodological approaches: optical microscopy; a histological method adapted to packaging materials; and a method of attenuated total internal reflection (ATR) spectroscopy in the infrared region with Fourier transform. The use of these methods shows the betulin granules, individual or forming chains. To visualize the antimicrobial additive in the polymer bulk, a modified histological method adapted for film materials and attenuated total internal reflection (ATR) spectroscopy in the infrared region were used with Fourier transform using a Lumos Bruker microscope (Germany) (ATR crystal based on germanium). Sample sections were analyzed using Leica 818 blades at an angle of 45 degrees. The histological method consists of the study of a biological object thin section, in the transmitted light of a microscope, stained with contrast dyes to reveal its structures, and placed on a glass slide. In the method modified for the present study, instead of a biological one, a synthetic object was used, namely the developed film materials with the addition of natural organic origin. Individual granules are about 2 µm long; chains can be up to 10 µm long. The thickness of the granules ranged from 1 to 1.5 microns. It can be seen that the depth distribution of granules in the film from the inner surface to the outer one is rather uniform. Spectroscopic studies using the method of automatic ATR mapping in the region of 880 cm-1 made it possible to evaluate the distribution of an antimicrobial additive based on triterpenoids on the surface and in the polymer bulk.

3.
Polymers (Basel) ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019127

RESUMO

Ensuring the microbiological safety of food products is a problem of current interest. The use of antimicrobial packaging materials is a way of solving the problem. When developing packaging materials, it is advisable to use a modern approach based on the creation of biodegradable materials. The difficulty in the selection of the polymer compositions' components lies in solving the dilemma of the joint introduction and processing of antimicrobial and biodegradable agents. The studies of the ultrasound treatment on the melts of polymer mixtures showed an increase in the dispersion process of the components of the mixture. In this regard, this work aimed to study the effect of the ultrasonic treatment on the melts of polymer compositions containing thermoplastic starch and birch bark extract (BBE). In the work, the properties of PE-based packaging materials with various BBE concentrations obtained with ultrasonic treatment of melts on a laboratory extruder were studied. Biodegradable polymer compositions containing thermoplastic starch and BBE, obtained with the use of the ultrasonic treatment during extrusion, were investigated. The methods for studying rheological, physic-mechanical, antimicrobial properties and sanitary chemical indicators of materials were used in the article. It was found that ultrasonic treatment increases the melt flow and contributes to the production of materials with the uniform distribution of additives. The BBE content from 1.0% and higher in the contents of the material provides antimicrobial properties. When studying the permeability of oxygen and water vapor of the polymer compositions based on PE and BBE, it was found that the introduction of a filler increases vapor permeability by about 8-12% compared with control samples. The optimal concentration of BBE in polyethylene compositions containing thermoplastic starch was determined. The extension of the shelf life of the food product during storage in the developed material was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...