Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 17(8): 2748-2761, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33573433

RESUMO

Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Hidróxido de Alumínio , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organofosforados , Infecções por Papillomavirus/prevenção & controle , Polímeros
2.
Vaccine ; 39(2): 292-302, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33309485

RESUMO

Current human papilloma virus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain that lack vaccine coverage. The novel RG1-VLP (virus-like particle) vaccine candidate utilizes the HPV16-L1 subunit as a backbone to display an inserted HPV16-L2 17-36 a.a. "RG1" epitope; the L2 RG1 epitope is conserved across many HPV types and the generation of cross-neutralizing antibodies (Abs) against which has been demonstrated. In an effort to heighten the immunogenicity of the RG1-VLP vaccine, we compared in BALB/c mice adjuvant formulations consisting of novel bacterial enzymatic combinatorial chemistry (BECC)-derived toll-like receptor 4 (TLR4) agonists and the aluminum hydroxide adjuvant Alhydrogel. In the presence of BECC molecules, consistent improvements in the magnitude of Ab responses to both HPV16-L1 and the L2 RG1 epitope were observed compared to Alhydrogel alone. Furthermore, neutralizing titers to HPV16 as well as cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39 were augmented in the presence of BECC agonists as well. Levels of L1 and L2-specific Abs were achieved after two vaccinations with BECC/Alhydrogel adjuvant that were equivalent to or greater than levels achieved with 3 vaccinations with Alhydrogel alone, indicating that the presence of BECC molecules resulted in accelerated immune responses that could allow for a decreased dose schedule for VLP-based HPV vaccines. In addition, dose-sparing studies indicated that adjuvantation with BECC/Alhydrogel allowed for a 75% reduction in antigen dose while still retaining equivalent magnitudes of responses to the full VLP dose with Alhydrogel. These data suggest that adjuvant optimization of HPV VLP-based vaccines can lead to rapid immunity requiring fewer boosts, dose-sparing of VLPs expensive to produce, and the establishment of a longer-lasting humoral immunity.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Receptor 4 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...