Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(9): 2701-2708, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774574

RESUMO

Center rot of onion is caused by a complex of plant pathogenic Pantoea species, which can lead to significant yield losses in the field and during storage. Conventional growers use foliar protectants such as a mixture of copper bactericides and an ethylene-bis-dithiocarbamate (EBDC) fungicide to manage the disease; however, organic growers have limited management options besides copper-protectants. Biocontrol agents (BCAs) provide an alternative; however, their efficacy could be compromised due in part to their inability to colonize the foliage. We hypothesized that pretreatment with peroxide (OxiDate 2.0: a.i., hydrogen peroxide and peroxyacetic acid) enhances the colonizing ability of the subsequently applied BCAs, leading to effective center rot management. Field trials were conducted in 2020 and 2021 to assess the efficacy of peroxide, BCAs (Serenade ASO: Bacillus subtilis and BlightBan: Pseudomonas fluorescens), and an insecticide program (tank mix of spinosad and neem oil) to manage center rot. We observed no significant difference in foliar area under the disease progress curve (AUDPC) between the peroxide pretreated P. fluorescens plots and only P. fluorescens-treated plots in 2020 and 2021. Peroxide pretreatment before B. subtilis application significantly reduced the foliar AUDPC as compared with the stand-alone B. subtilis treatment in 2020; however, no such difference was observed in 2021. Similarly, peroxide pretreatment before either of the BCAs did not seem to reduce the incidence of bulb rot as compared with the stand-alone BCA treatment in any of the trials (2020 and 2021). Additionally, our foliar microbiome study showed comparatively higher P. fluorescens retention on peroxide pretreated onion foliage; however, at the end of the growing season, P. fluorescens was drastically reduced and was virtually nonexistent (<0.002% of the total reads). Overall, the pretreatment with peroxide had a limited effect in improving the foliar colonizing ability of BCAs and consequently a limited effect in managing center rot.


Assuntos
Fungicidas Industriais , Pantoea , Cobre , Doenças das Plantas/prevenção & controle , Peróxidos
2.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203347

RESUMO

This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus-vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector-virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.


Assuntos
Hemípteros , Vírus de Plantas , Tisanópteros , Animais , Insetos Vetores/genética , Doenças das Plantas , Vírus de Plantas/genética
3.
Front Microbiol ; 13: 1094155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817114

RESUMO

Pantoea ananatis is a member of a Pantoea species complex that causes center rot of bulb onions (A. cepa) and also infects other Allium crops like leeks (Allium porrum), chives (Allium schoenoprasum), bunching onion or Welsh onion (Allium fistulosum), and garlic (Allium sativum). This pathogen relies on a chromosomal phosphonate biosynthetic gene cluster (HiVir) and a plasmid-borne thiosulfinate tolerance cluster (alt) for onion pathogenicity and virulence, respectively. However, pathogenicity and virulence factors associated with other Allium species remain unknown. We used phenotype-dependent genome-wide association (GWAS) and phenotype-independent gene-pair coincidence (GPC) analyses on a panel of diverse 92 P. ananatis strains, which were inoculated on A. porrum and A. fistulosum × A. cepa under greenhouse conditions. Phenotypic assays showed that, in general, these strains were more aggressive on A. fistulosum × A. cepa as opposed to A. porrum. Of the 92 strains, only six showed highly aggressive foliar lesions on A. porrum compared to A. fistulosum × A. cepa. Conversely, nine strains showed highly aggressive foliar lesions on A. fistulosum × A. cepa compared to A. porrum. These results indicate that there are underlying genetic components in P. ananatis that may drive pathogenicity in these two Allium spp. Based on GWAS for foliar pathogenicity, 835 genes were associated with P. ananatis' pathogenicity on A. fistulosum × A. cepa whereas 243 genes were associated with bacterial pathogenicity on A. porrum. The Hivir as well as the alt gene clusters were identified among these genes. Besides the 'HiVir' and the alt gene clusters that are known to contribute to pathogenicity and virulence from previous studies, genes annotated with functions related to stress responses, a potential toxin-antitoxin system, flagellar-motility, quorum sensing, and a previously described phosphonoglycan biosynthesis (pgb) cluster were identified. The GPC analysis resulted in the identification of 165 individual genes sorted into 39 significant gene-pair association components and 255 genes sorted into 50 significant gene-pair dissociation components. Within the coincident gene clusters, several genes that occurred on the GWAS outputs were associated with each other but dissociated with genes that did not appear in their respective GWAS output. To focus on candidate genes that could explain the difference in virulence between hosts, a comparative genomics analysis was performed on five P. ananatis strains that were differentially pathogenic on A. porrum or A. fistulosum × A. cepa. Here, we found a putative type III secretion system, and several other genes that occurred on both GWAS outputs of both Allium hosts. Further, we also demonstrated utilizing mutational analysis that the pepM gene in the HiVir cluster is important than the pepM gene in the pgb cluster for P. ananatis pathogenicity in A. fistulosum × A. cepa and A. porrum. Overall, our results support that P. ananatis may utilize a common set of genes or gene clusters to induce symptoms on A. fistulosum × A. cepa foliar tissue as well as A. cepa but implicates additional genes for infection on A. porrum.

4.
Front Microbiol ; 12: 684756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489883

RESUMO

Pantoea ananatis, a gram negative and facultative anaerobic bacterium is a member of a Pantoea spp. complex that causes center rot of onion, which significantly affects onion yield and quality. This pathogen does not have typical virulence factors like type II or type III secretion systems but appears to require a biosynthetic gene-cluster, HiVir/PASVIL (located chromosomally comprised of 14 genes), for a phosphonate secondary metabolite, and the 'alt' gene cluster (located in plasmid and comprised of 11 genes) that aids in bacterial colonization in onion bulbs by imparting tolerance to thiosulfinates. We conducted a deep pan-genome-wide association study (pan-GWAS) to predict additional genes associated with pathogenicity in P. ananatis using a panel of diverse strains (n = 81). We utilized a red-onion scale necrosis assay as an indicator of pathogenicity. Based on this assay, we differentiated pathogenic (n = 51)- vs. non-pathogenic (n = 30)-strains phenotypically. Pan-genome analysis revealed a large core genome of 3,153 genes and a flexible accessory genome. Pan-GWAS using the presence and absence variants (PAVs) predicted 42 genes, including 14 from the previously identified HiVir/PASVIL cluster associated with pathogenicity, and 28 novel genes that were not previously associated with pathogenicity in onion. Of the 28 novel genes identified, eight have annotated functions of site-specific tyrosine kinase, N-acetylmuramoyl-L-alanine amidase, conjugal transfer, and HTH-type transcriptional regulator. The remaining 20 genes are currently hypothetical. Further, a core-genome SNPs-based phylogeny and horizontal gene transfer (HGT) studies were also conducted to assess the extent of lateral gene transfer among diverse P. ananatis strains. Phylogenetic analysis based on PAVs and whole genome multi locus sequence typing (wgMLST) rather than core-genome SNPs distinguished red-scale necrosis inducing (pathogenic) strains from non-scale necrosis inducing (non-pathogenic) strains of P. ananatis. A total of 1182 HGT events including the HiVir/PASVIL and alt cluster genes were identified. These events could be regarded as a major contributing factor to the diversification, niche-adaptation and potential acquisition of pathogenicity/virulence genes in P. ananatis.

5.
Pathogens ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201638

RESUMO

Zinc (Zn) accumulation and deficiency affect plant response to pests and diseases differently in varying pathosystems. The concentrations of Zn in plants aid in priming defense signaling pathways and help in enhanced structural defenses against plant pathogens. Studies are lacking on how concentrations of Zn in watermelon plants influence defense against two important soil-borne pathogens: Fusarium oxysporum f. sp. niveum (FON) and southern root-knot nematode (RKN, Meloidogyne incognita). In this study a comparative transcriptomics evaluation of watermelon plants in response to high (1.2 ppm) and low (0.2 ppm) levels of Zn were determined. Differential transcript-level responses differed in watermelon plants when infected with FON or RKN or both under high- and low-Zn treatment regimes in a controlled hydroponics system. Higher numbers of differentially expressed genes (DEGs) were observed in high-Zn-treated than in low-Zn-treated non-inoculated plants, in plants inoculated with FON alone and in plants inoculated with RKN alone. However, in the co-inoculated system, low-Zn treatment had higher DEGs as compared to high-Zn treatment. In addition, most DEGs were significantly enriched in hormone signal transduction and MAPK signaling pathway, suggesting an induction of systemic resistance with high-Zn concentrations. Taken together, this study substantially expands transcriptome data resources and suggests a molecular potential framework for watermelon-Zn interaction in FON and RKN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...