Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37927911

RESUMO

C. elegans NHR-85 is a poorly characterized nuclear hormone receptor transcription factor with an emerging role in regulating microRNA expression to control developmental timing. We generated the first NHR-85 translational fusion by knocking a GFP::AID*::3xFLAG cassette into the endogenous locus to tag all known isoforms. nhr-85 ::GFP::AID*::3xFLAG animals have wild-type broodsizes and NHR-85 ::GFP peaks in expression at the start of the L4 stage in epithelial cells. NHR-85 is not expressed in the germline, suggesting that while it might cooperate with the NHR-23 transcription factor to control microRNA expression, NHR-23 promotes spermatogenesis independent of NHR-85 . This nhr-85 ::GFP::AID*::3xFLAG strain will be a valuable resource for studying when and where NHR-85 acts to promote developmental timing.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37908494

RESUMO

The auxin-inducible degron (AID) system is a widely-used system for conditional protein depletion. During the course of an experiment, we depleted the nuclear hormone receptor transcription factor NHR-23 to study molting, and we recovered a spontaneous suppressor allele that bypassed the L1 larval arrest caused by NHR-23 depletion. These mutants also failed to deplete a BFP::AID reporter in the strain background, suggesting a broader defect in the AID system. These animals carried an in-frame 18 base pair insertion that produced a 6 amino acid repeat in TIR1. The larval arrest in these animals could be restored by expressing a wild-type TIR1 transgene from an extrachromosomal array. Sister siblings that lost this array developed normally on auxin. Together, these experiments indicate that the TIR1 mutation was causing the loss of developmental arrest in the nhr-23::AID strain. This result highlights the importance of setting up a robust secondary screen to detect such mutants if performing forward genetic screens in conjunction with the AID system.

3.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37854098

RESUMO

C. elegans NHR-23 is a nuclear hormone receptor transcription factor involved in molting, apical extracellular matrix structure, and spermatogenesis. To determine NHR-23 expression dynamics, we previously tagged the endogenous nhr-23 locus with a GFP::AID*::3xFLAG tag. To allow co-localization of NHR-23 with green fluorescent protein-tagged factors of interest, we generated an equivalent strain carrying an mScarlet::3xMyc tag to produce a C-terminal fusion. Similar to the GFP::AID*::3xFLAG knock-in, NHR-23 ::mScarlet::3xMyc was expressed in seam and hypodermal cells, vulval precursor cells, and the spermatogenic germline. We also observed a diffuse NHR-23::mScarlet expression pattern in spermatids and residual bodies after NHR-23 ceased to localize on chromatin. Further examination of this novel localization may provide insight into NHR-23 regulation of spermatogenesis.

4.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129010

RESUMO

Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748711

RESUMO

Lysosomes are an important organelle required for the degradation of a range of cellular components. Lysosome function is critical for development and homeostasis as dysfunction can lead to inherited genetic disorders, cancer, and neurodegenerative and metabolic diseases. The acidic and protease-rich environment of lysosomes poses experimental challenges. Many fluorescent proteins are quenched or degraded, while specific red fluorescent proteins can be cleaved from translational fusion partners and accumulate. While studying MLT-11, a Caenorhabditis elegans molting factor that localizes to lysosomes and the cuticle, we sought to optimize several experimental parameters. We found that, in contrast to mNeonGreen fusions, mScarlet fusions to MLT-11 missed cuticular and rectal epithelial localization. Rapid sample lysis and denaturation were critical for preventing MLT-11 fragmentation while preparing lysates for western blots. Using a model lysosomal substrate (NUC-1), we found that rigid polyproline linkers and truncated mCherry constructs do not prevent cleavage of mCherry from NUC-1. We provide evidence that extended localization in lysosomal environments prevents the detection of FLAG epitopes in western blots. Finally, we optimize an acid-tolerant green fluorescent protein (Gamillus) for use in C. elegans. These experiments provide important experimental considerations and new reagents for the study of C. elegans lysosomal proteins.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...