Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(3): e0194896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566083

RESUMO

More than 90% of the cases of Parkinson's disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown. We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neurons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-positive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite-another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was demonstrated in organotypic slice cultures of mouse midbrain exposed to MPP+ in vitro and in mice subjected to intrastriatal injections of MPP+ in vivo. Seven days after intrastriatal MPP+ injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that AQP9 -selectively expressed in catecholaminergic neurons-is permeable to MPP+ and suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopaminergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge this is the first evidence implicating a toxin permeable membrane channel in the pathophysiology of Parkinson's disease.


Assuntos
Aquaporinas/genética , Neuroproteção/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacocinética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Deleção de Genes , Células HEK293 , Humanos , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Xenopus laevis
2.
J Neurosci ; 32(17): 6000-13, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539860

RESUMO

The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules µm⁻³), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-D-aspartate (4-methoxy-7-nitroindolinyl-D-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and D-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.


Assuntos
Sistema Nervoso Central/citologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Sistema Nervoso Central/anatomia & histologia , Ácido D-Aspártico/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/deficiência , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/deficiência , Transportador 3 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Rim/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , Proteína Básica da Mielina/metabolismo , Neurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Proteolipídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo , Sinaptofisina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato
3.
Proc Natl Acad Sci U S A ; 108(6): 2563-8, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262839

RESUMO

Regulatory volume decrease (RVD) is a key mechanism for volume control that serves to prevent detrimental swelling in response to hypo-osmotic stress. The molecular basis of RVD is not understood. Here we show that a complex containing aquaporin-4 (AQP4) and transient receptor potential vanilloid 4 (TRPV4) is essential for RVD in astrocytes. Astrocytes from AQP4-KO mice and astrocytes treated with TRPV4 siRNA fail to respond to hypotonic stress by increased intracellular Ca(2+) and RVD. Coimmunoprecipitation and immunohistochemistry analyses show that AQP4 and TRPV4 interact and colocalize. Functional analysis of an astrocyte-derived cell line expressing TRPV4 but not AQP4 shows that RVD and intracellular Ca(2+) response can be reconstituted by transfection with AQP4 but not with aquaporin-1. Our data indicate that astrocytes contain a TRPV4/AQP4 complex that constitutes a key element in the brain's volume homeostasis by acting as an osmosensor that couples osmotic stress to downstream signaling cascades.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Tamanho Celular , Canais de Cátion TRPV/metabolismo , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 4/genética , Astrócitos/citologia , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Cricetinae , Humanos , Camundongos , Camundongos Knockout , Pressão Osmótica/fisiologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/genética
4.
J Neurosci Res ; 87(6): 1310-22, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19115411

RESUMO

AQP9 is an aquaglyceroporin that serves important functions in peripheral organs, including the liver. Reflecting the lack of AQP9 knockout mice, uncertainties still prevail regarding the localization and roles of AQP9 in the central nervous system. Here we present a comprehensive analysis of AQP9 gene expression in brain, based on a quantitative and multipronged approach that includes the use of animals with targeted deletion of the AQP9 gene. We show by real-time PCR that AQP9 mRNA concentration in rat and mouse brain is approximately 3% and approximately 0.5%, respectively, of that in rat and mouse liver, the organ with the highest level of AQP9. By blue native gel analysis it could be demonstrated that the brain contains tetrameric AQP9, corresponding to the functional form of AQP9. The band corresponding to the AQP9 tetramer was absent in AQP9 knockout brain and liver. Immunocytochemistry and in situ hybridization analyses with AQP9 knockout controls show that subpopulations of nigral neurons express AQP9 both at the mRNA and at the protein levels and that populations of cortical cells (including hilar neurons in the hippocampus) contain AQP9 mRNA but no detectable AQP9 immunosignal. The present data provide conclusive evidence for the presence of tetrameric AQP9 in brain and for the expression of AQP9 in neurons.


Assuntos
Aquaporinas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Animais , Aquaporinas/genética , Encéfalo/ultraestrutura , Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Quaternária de Proteína , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Proc Natl Acad Sci U S A ; 103(36): 13532-6, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16938871

RESUMO

The aquaporin-4 (AQP4) pool in the perivascular astrocyte membranes has been shown to be critically involved in the formation and dissolution of brain edema. Cerebral edema is a major cause of morbidity and mortality in stroke. It is therefore essential to know whether the perivascular pool of AQP4 is up- or down-regulated after an ischemic insult, because such changes would determine the time course of edema formation. Here we demonstrate by quantitative immunogold cytochemistry that the ischemic striatum and neocortex show distinct patterns of AQP4 expression in the reperfusion phase after 90 min of middle cerebral artery occlusion. The striatal core displays a loss of perivascular AQP4 at 24 hr of reperfusion with no sign of subsequent recovery. The most affected part of the cortex also exhibits loss of perivascular AQP4. This loss is of magnitude similar to that of the striatal core, but it shows a partial recovery toward 72 hr of reperfusion. By freeze fracture we show that the loss of perivascular AQP4 is associated with the disappearance of the square lattices of particles that normally are distinct features of the perivascular astrocyte membrane. The cortical border zone differs from the central part of the ischemic lesion by showing no loss of perivascular AQP4 at 24 hr of reperfusion but rather a slight increase. These data indicate that the size of the AQP4 pool that controls the exchange of fluid between brain and blood during edema formation and dissolution is subject to large and region-specific changes in the reperfusion phase.


Assuntos
Aquaporina 4/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neocórtex/metabolismo , Animais , Aquaporina 4/deficiência , Aquaporina 4/ultraestrutura , Astrócitos/metabolismo , Barreira Hematoencefálica/fisiologia , Edema Encefálico/fisiopatologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Técnica de Fratura por Congelamento , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neocórtex/fisiopatologia , Neocórtex/ultraestrutura , Reperfusão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...