Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(4): 167933, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36581244

RESUMO

Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained are often inaccurate. This hampers antibody validation and negatively impacts the reliability of western blot data, resulting worldwide in a considerable waste of reagents and labour. We argue that, to alleviate these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration patterns for approximately 10'000 human proteins in five commonly used cell lines. We applied a robust internal calibration of migration to determine accurate and reproducible molecular weights. This in turn allows merging replicates to increase accuracy, but also enables comparing different cell lines. Mining of the data obtained highlights structural factors that affect migration of distinct classes of proteins. When combined with peptide coverage, the data produced recapitulates known post-translational modifications and differential splicing and can be used to formulate hypotheses on new or poorly known processing events. The full information is freely accessible as a web resource through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this database will be useful to investigators worldwide for troubleshooting western blot experiments, but could also contribute to the characterization of human proteoforms.


Assuntos
Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Proteínas , Humanos , Linhagem Celular , Espectrometria de Massas , Proteínas/química , Reprodutibilidade dos Testes , Peso Molecular
2.
Cell Death Discov ; 7(1): 164, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34226511

RESUMO

Cells are in constant adaptation to environmental changes to insure their proper functioning. When exposed to stresses, cells activate specific pathways to elicit adaptive modifications. Those changes can be mediated by selective modulation of gene and protein expression as well as by post-translational modifications, such as phosphorylation and proteolytic processing. Protein cleavage, as a controlled and limited post-translational modification, is involved in diverse physiological processes such as the maintenance of protein homeostasis, activation of repair pathways, apoptosis and the regulation of proliferation. Here we assessed by quantitative proteomics the proteolytic landscape in two cell lines subjected to low cisplatin concentrations used as a mild non-lethal stress paradigm. This landscape was compared to the one obtained in the same cells stimulated with cisplatin concentrations inducing apoptosis. These analyses were performed in wild-type cells and in cells lacking the two main executioner caspases: caspase-3 and caspase-7. Ninety-two proteins were found to be cleaved at one or a few sites (discrete cleavage) in low stress conditions compared to four hundred and fifty-three in apoptotic cells. Many of the cleaved proteins in stressed cells were also found to be cleaved in apoptotic conditions. As expected, ~90% of the cleavage events were dependent on caspase-3/caspase-7 in apoptotic cells. Strikingly, upon exposure to non-lethal stresses, no discrete cleavage was detected in cells lacking caspase-3 and caspase-7. This indicates that the proteolytic landscape in stressed viable cells fully depends on the activity of executioner caspases. These results suggest that the so-called executioner caspases fulfill important stress adaptive responses distinct from their role in apoptosis. Mass spectrometry data are available via ProteomeXchange with identifier PXD023488.

3.
Mol Cell Proteomics ; 17(12): 2347-2357, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171158

RESUMO

Spliced peptides are short protein fragments spliced together in the proteasome by peptide bond formation. True estimation of the contribution of proteasome-spliced peptides (PSPs) to the global human leukocyte antigen (HLA) ligandome is critical. A recent study suggested that PSPs contribute up to 30% of the HLA ligandome. We performed a thorough reanalysis of the reported results using multiple computational tools and various validation steps and concluded that only a fraction of the proposed PSPs passes the quality filters. To better estimate the actual number of PSPs, we present an alternative workflow. We performed de novo sequencing of the HLA-peptide spectra and discarded all de novo sequences found in the UniProt database. We checked whether the remaining de novo sequences could match spliced peptides from human proteins. The spliced sequences were appended to the UniProt fasta file, which was searched by two search tools at a false discovery rate (FDR) of 1%. We find that 2-6% of the HLA ligandome could be explained as spliced protein fragments. The majority of these potential PSPs have good peptide-spectrum match properties and are predicted to bind the respective HLA molecules. However, it remains to be shown how many of these potential PSPs actually originate from proteasomal splicing events.


Assuntos
Biologia Computacional/métodos , Antígenos HLA/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína , Apresentação de Antígeno/fisiologia , Linhagem Celular Tumoral , Exoma , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma , Transdução de Sinais , Espectrometria de Massas em Tandem , Sequenciamento do Exoma
4.
J Proteome Res ; 16(8): 3092-3101, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28636386

RESUMO

Mass spectrometry (MS) has become the tool of choice for the large scale identification and quantitation of proteins and their post-translational modifications (PTMs). This development has been enabled by powerful software packages for the automated analysis of MS data. While data on PTMs of thousands of proteins can nowadays be readily obtained, fully deciphering the complexity and combinatorics of modification patterns even on a single protein often remains challenging. Moreover, functional investigation of PTMs on a protein of interest requires validation of the localization and the accurate quantitation of its changes across several conditions, tasks that often still require human evaluation. Software tools for large scale analyses are highly efficient but are rarely conceived for interactive, in-depth exploration of data on individual proteins. We here describe MsViz, a web-based and interactive software tool that supports manual validation of PTMs and their relative quantitation in small- and medium-size experiments. The tool displays sequence coverage information, peptide-spectrum matches, tandem MS spectra and extracted ion chromatograms through a single, highly intuitive interface. We found that MsViz greatly facilitates manual data inspection to validate PTM location and quantitate modified species across multiple samples.


Assuntos
Processamento de Proteína Pós-Traducional , Software , Humanos , Estatística como Assunto/métodos , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador
5.
Artigo em Inglês | MEDLINE | ID: mdl-25566535

RESUMO

Due to their sensitivity and speed, mass-spectrometry based analytical technologies are widely used to in metabolomics to characterize biological phenomena. To address issues like metadata organization, quality assessment, data processing, data storage, and, finally, submission to public repositories, bioinformatic pipelines of a non-interactive nature are often employed, complementing the interactive software used for initial inspection and visualization of the data. These pipelines often are created as open-source software allowing the complete and exhaustive documentation of each step, ensuring the reproducibility of the analysis of extensive and often expensive experiments. In this paper, we will review the major steps which constitute such a data processing pipeline, discussing them in the context of an open-source software for untargeted MS-based metabolomics experiments recently developed at our institute. The software has been developed by integrating our metaMS R package with a user-friendly web-based application written in Grails. MetaMS takes care of data pre-processing and annotation, while the interface deals with the creation of the sample lists, the organization of the data storage, and the generation of survey plots for quality assessment. Experimental and biological metadata are stored in the ISA-Tab format making the proposed pipeline fully integrated with the Metabolights framework.

6.
Anal Chem ; 81(18): 7604-10, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19702277

RESUMO

The diversity of experimental workflows involving LC-MS/MS and the extended range of mass spectrometers tend to produce extremely variable spectra. Variability reduces the accuracy of compound identification produced by commonly available software for a spectral library search. We introduce here a new algorithm that successfully matches MS/MS spectra generated by a range of instruments, acquired under different conditions. Our algorithm called X-Rank first sorts peak intensities of a spectrum and second establishes a correlation between two sorted spectra. X-Rank then computes the probability that a rank from an experimental spectrum matches a rank from a reference library spectrum. In a training step, characteristic parameter values are generated for a given data set. We compared the efficiency of the X-Rank algorithm with the dot-product algorithm implemented by MS Search from the National Institute of Standards and Technology (NIST) on two test sets produced with different instruments. Overall the X-Rank algorithm accurately discriminates correct from wrong matches and detects more correct substances than the MS Search. Furthermore, X-Rank could correctly identify and top rank eight chemical compounds in a commercially available test mix. This confirms the ability of the algorithm to perform both a straight single-platform identification and a cross-platform library search in comparison to other tools. It also opens the possibility for efficient general unknown screening (GUS) against large compound libraries.


Assuntos
Algoritmos , Compostos Orgânicos/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...