Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(14): e1908351, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32091158

RESUMO

Thin layers of topological insulator materials are quasi-2D systems featuring a complex interplay between quantum confinement and topological band structure. To understand the role of the spatial distribution of carriers in electrical transport, the Josephson effect, magnetotransport, and weak anti-localization are studied in bottom-gated thin Bi2 Te3 topological insulator films. The experimental carrier densities are compared to a model based on the solutions of the self-consistent Schrödinger-Poisson equations and they are in excellent agreement. The modeling allows for a quantitative interpretation of the weak antilocalization correction to the conduction and of the critical current of Josephson junctions with weak links made from such films without any ad hoc assumptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...