Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 80: 101678, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781092

RESUMO

Arc is an effector immediate-early gene that is critical for forming long-term memories. Since its discovery 25 years ago, it has repeatedly surprised us with a number of intriguing properties, including the transport of its mRNA to recently-activated synapses, its master role in bidirectionally regulating synaptic strength, its evolutionary retroviral origins, its ability to mediate intercellular transfer between neurons via extracellular vesicles (EVs), and its exceptional regulation-both temporally and spatially. The current review discusses how Arc has been used as a tool to identify the neural networks involved in cognitive aging and how Arc itself may contribute to cognitive outcome in aging. In addition, we raise several outstanding questions, including whether Arc-containing EVs in peripheral blood might provide a noninvasive biomarker for memory-related synaptic failure in aging, and whether rectifying Arc dysregulation is likely to be an effective strategy for bending the arc of aging toward successful cognitive outcomes.


Assuntos
Envelhecimento Cognitivo , Plasticidade Neuronal , Envelhecimento/genética , Proteínas do Citoesqueleto/genética , Humanos , Proteínas do Tecido Nervoso , Plasticidade Neuronal/fisiologia , Sinapses
2.
Mol Neurobiol ; 57(6): 2727-2740, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333254

RESUMO

Aging is accompanied by aberrant gene expression that ultimately affects brain plasticity and the capacity to form long-term memories. Immediate-early genes (IEGs) play an active role in these processes. Using a rat model of normal cognitive aging, we found that the expression of Egr1 and c-Fos was associated with chronological age, whereas Arc was more tightly linked to cognitive outcomes in aging. More specifically, constitutive Arc expression was significantly elevated in aged rats with memory impairment compared to cognitively intact aged rats and young adult animals. Since alterations in the neuroepigenetic mechanisms that gate hippocampal gene expression are also associated with cognitive outcome in aging, we narrowed our focus on examining potential epigenetic mechanisms that may lead to aberrant Arc expression. Employing a multilevel analytical approach using bisulfite sequencing, chromatin immunoprecipitations, and micrococcal nuclease digestion, we identified CpG sites in the Arc promoter that were coupled to poor cognitive outcomes in aging, histone marks that were similarly coupled to spatial memory deficits, and nucleosome positioning that also varied depending on cognitive status. Together, these findings paint a diverse and complex picture of the Arc epigenetic landscape in cognitive aging and bolster a body of work, indicating that dysfunctional epigenetic regulation is associated with memory impairment in the aged brain.


Assuntos
Envelhecimento Cognitivo/fisiologia , Proteínas do Citoesqueleto/genética , Aprendizagem em Labirinto/fisiologia , Proteínas do Tecido Nervoso/genética , Memória Espacial/fisiologia , Animais , Proteínas do Citoesqueleto/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
3.
Hippocampus ; 29(12): 1165-1177, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31334577

RESUMO

Changes in neuronal network activity and increased interindividual variability in memory are among the most consistent features of growing older. Here, we examined the relationship between these hallmarks of aging. Young and aged rats were trained on a water maze task where aged individuals reliably display an increased range of spatial memory capacities relative to young. Two weeks later, neuronal activity was induced pharmacologically with a low dose of pilocarpine and control animals received vehicle. Activity levels were proxied by quantifying the immediate early gene products Arc and c-Fos. While no relationship was observed between basal, resting activity, and individual differences in spatial memory in any brain region, pilocarpine-induced marker expression was tightly coupled with memory in all areas of the prefrontal cortex (PFC) and hippocampus examined. The nature of this association, however, differed across regions and in relation to age-related cognitive outcome. Specifically, in the medial PFC, induced activity was greatest in aged rats with cognitive impairment and correlated with water maze performance across all subjects. In the hippocampus, the range of induced marker expression was comparable between groups and similarly coupled with memory in both impaired and unimpaired aged rats. Together the findings highlight that the dynamic range of neural network activity across multiple brain regions is a critical component of neurocognitive aging.


Assuntos
Envelhecimento Cognitivo/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Envelhecimento Cognitivo/psicologia , Proteínas do Citoesqueleto/biossíntese , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Rede Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Pilocarpina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Long-Evans
4.
Methods Mol Biol ; 1983: 265-277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31087304

RESUMO

The acetylation of histone tails, which relaxes compact chromatin structure and enhances the accessibility of DNA to regulatory proteins, has emerged as a key mechanism for regulating gene expression. These modifications in turn play critical roles in forming long-term memories. Chromatin immunoprecipitation (ChIP) experiments have enabled the identification of specific histone modifications and the genes most closely associated with active memory formation. Problematically, however, the majority of these studies analyze diverse populations of cell homogenates obtained from the gross dissection of large brain regions. The protocol outlined here uses methods to ascribe gene-specific histone modifications (via specific antibodies and RT-qPCR) to specific cell subtypes (via specific antibodies and cell sorting) in discrete memory-related brain regions (via microdissection) to more precisely identify the role of histone acetylation and deacetylation in cognitive neuroepigenetics.


Assuntos
Encéfalo/metabolismo , Cognição , Epigênese Genética , Histonas/metabolismo , Acetilação , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Histona Desacetilases/metabolismo , Humanos , Memória , Microdissecção , Especificidade de Órgãos/genética
6.
Brain Behav ; 8(12): e01144, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30378284

RESUMO

INTRODUCTION: Intelligence is a core construct of individual differences in cognitive abilities and a strong predictor of important life outcomes. Within recent years, rates of cesarean section have substantially increased globally, though little is known about its effect on neurodevelopmental trajectories. Thus, we aimed to investigate the influence of delivery by cesarean section on the genetics of intelligence in children. METHODS: Participants were recruited through the Avon Longitudinal Study of Parents and Children (ALSPAC). Intelligence was measured by the Wechsler Intelligence Scale for Children (WISC). Genotyping was performed using the Illumina Human Hap 550 quad genome-wide SNP genotyping platform and was followed by imputation using MACH software. Genome-wide interaction analyses were conducted using linear regression. RESULTS: A total of 2,421 children and 2,141,747 SNPs were subjected to the genome-wide interaction analyses. No variant reached genome-wide significance. The strongest interaction was observed at rs17800861 in the GRIN2A gene (ß = -3.43, 95% CI = -4.74 to -2.12, p = 2.98E-07). This variant is predicted to be located within active chromatin compartments in the hippocampus and may influence binding of the NF-kappaB transcription factor. CONCLUSIONS: Our results may indicate that mode of delivery might have a moderating effect on genetic disposition of intelligence in children. Studies of considerable sizes (>10,000) are likely required to more robustly detect variants governing such interaction. In summary, the presented findings prompt the need for further studies aimed at increasing our understanding of effects various modes of delivery may have on health outcomes in children.


Assuntos
Cesárea , Inteligência/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Variância , Criança , Feminino , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Masculino , Gravidez , Escalas de Wechsler
7.
Front Cell Neurosci ; 11: 294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979192

RESUMO

Activity-regulated cytoskeleton-associated protein, Arc, is a major regulator of long-term synaptic plasticity and memory formation. Here we reveal a novel interaction partner of Arc, a resident endoplasmic reticulum transmembrane protein, calnexin. We show an interaction between recombinantly-expressed GST-tagged Arc and endogenous calnexin in HEK293, SH-SY5Y neuroblastoma and PC12 cells. The interaction was dependent on the central linker region of the Arc protein that is also required for endocytosis of AMPA-type glutamate receptors. High-resolution proximity-ligation assays (PLAs) demonstrate molecular proximity of endogenous Arc with the cytosolic C-terminus, but not the lumenal N-terminus of calnexin. In hippocampal neuronal cultures treated with brain-derived neurotrophic factor (BDNF), Arc interacted with calnexin in the perinuclear cytoplasm and dendritic shaft. Arc also interacted with C-terminal calnexin in the adult rat dentate gyrus (DG). After induction of long-term potentiation (LTP) in the perforant path projection to the DG of adult anesthetized rats, enhanced interaction between Arc and calnexin was obtained in the dentate granule cell layer (GCL). Although Arc and calnexin are both implicated in the regulation of receptor endocytosis, no modulation of endocytosis was detected in transferrin uptake assays. Previous work showed that Arc interacts with multiple protein partners to regulate synaptic transmission and nuclear signaling. The identification of calnexin as a binding partner further supports the role of Arc as a hub protein and extends the range of Arc function to the endoplasmic reticulum, though the function of the Arc/calnexin interaction remains to be defined.

8.
J Alzheimers Dis ; 59(2): 723-735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28671113

RESUMO

BACKGROUND: Cognitive functions are highly heritable and polygenic, though the source of this genetic influence is unclear. On the neurobiological level, these functions rely on effective neuroplasticity, in which the activity-regulated cytoskeleton associated protein (ARC) plays an essential role. OBJECTIVES: To examine whether the ARC gene complex may contribute to the genetic components of intellectual function given the crucial role of ARC in brain plasticity and memory formation. METHODS: The ARC complex was tested for association with intelligence (IQ) in children from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 5,165). As Alzheimer's disease (AD) shares genetics with cognitive functioning, the association was followed up in an AD sample (17,008 cases, 37,154 controls). RESULTS: The ARC complex revealed association with verbal and total IQ (empirical p = 0.027 and 0.041, respectively) in the ALSPAC. The strongest single variant signal (rs2830077; empirical p = 0.018), within the APP gene, was confirmed in the AD sample (p = 2.76E-03). Functional analyses of this variant showed its preferential binding to the transcription factor CP2. DISCUSSION: This study implicates APP in childhood IQ. While follow-up studies are needed, this observation could help elucidate the etiology of disorders associated with cognitive dysfunction, such as AD.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Proteínas do Citoesqueleto/genética , Inteligência/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Doença de Alzheimer/genética , Criança , Simulação por Computador , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Genótipo , Humanos , Estudos Longitudinais , Masculino , Memória/fisiologia , Modelos Genéticos , Comportamento Verbal
9.
Brain Behav ; 5(10): e00376, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516611

RESUMO

INTRODUCTION: The Activity-Regulated Cytoskeleton-associated (ARC) gene encodes a protein that is critical for the consolidation of synaptic plasticity and long-term memory formation. Given ARC's key role in synaptic plasticity, we hypothesized that genetic variations in ARC may contribute to interindividual variability in human cognitive abilities or to attention-deficit hyperactivity disorder (ADHD) susceptibility, where cognitive impairment often accompanies the disorder. METHODS: We tested whether ARC variants are associated with six measures of cognitive functioning in 670 healthy subjects in the Norwegian Cognitive NeuroGenetics (NCNG) by extracting data from its Genome-Wide Association Study (GWAS). In addition, the Swedish Betula sample of 1800 healthy subjects who underwent similar cognitive testing was also tested for association with 19 tag SNPs. RESULTS: No ARC variants show association at the study-wide level, but several markers show a trend toward association with human cognitive functions. We also tested for association between ARC SNPs and ADHD in a Norwegian sample of cases and controls, but found no significant associations. CONCLUSION: This study suggests that common genetic variants located in ARC do not account for variance in human cognitive abilities, though small effects cannot be ruled out.


Assuntos
Cognição/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtornos Cognitivos/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/genética , Polimorfismo de Nucleotídeo Único
10.
Biochem J ; 468(1): 145-58, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25748042

RESUMO

The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Fenômenos Biofísicos , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Variação Genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Presenilina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
11.
J Biol Chem ; 287(26): 22354-66, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22584581

RESUMO

Cholinergic signaling induces Arc/Arg3.1, an immediate early gene crucial for synaptic plasticity. However, the molecular mechanisms that dictate Arc mRNA and protein dynamics during and after cholinergic epochs are little understood. Using human SH-SY5Y neuroblastoma cells, we show that muscarinic cholinergic receptor (mAchR) stimulation triggers Arc synthesis, whereas translation-dependent RNA decay and proteasomal degradation strictly limit the amount and duration of Arc expression. Chronic application of the mAchR agonist, carbachol (Cch), induces Arc transcription via ERK signaling and release of calcium from IP(3)-sensitive stores. Arc translation requires ERK activation, but not changes in intracellular calcium. Proteasomal degradation of Arc (half-life ∼37 min) was enhanced by thapsigargin, an inhibitor of the endoplasmic calcium-ATPase pump. Similar mechanisms of Arc protein regulation were observed in cultured rat hippocampal slices. Functionally, we studied the impact of cholinergic epoch duration and temporal pattern on Arc protein expression. Acute Cch treatment (as short as 2 min) induces transient, moderate Arc expression, whereas continuous treatment of more than 30 min induces maximal expression, followed by rapid decline. Cholinergic activity associated with rapid eye movement sleep may function to facilitate long term synaptic plasticity and memory. Employing a paradigm designed to mimic intermittent rapid eye movement sleep epochs, we show that application of Cch in a series of short bursts generates persistent and maximal Arc protein expression. The results demonstrate dynamic, multifaceted control of Arc synthesis during mAchR signaling, and implicate cholinergic epoch duration and repetition as critical determinants of Arc expression and function in synaptic plasticity and behavior.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Animais , Carbacol/metabolismo , Carbacol/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Hipocampo/metabolismo , Humanos , Memória , Modelos Biológicos , Plasticidade Neuronal , Ratos , Ratos Wistar , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Sono , Sono REM , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...