Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659930

RESUMO

Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 49 fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.

2.
J Hazard Mater ; 438: 129412, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780731

RESUMO

A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.


Assuntos
Grafite , Nanoestruturas , Óxido de Zinco , Óxido de Alumínio/química , Gases , Grafite/química , Humanos , Metanol , Nanoestruturas/química , Temperatura , Óxido de Zinco/química
3.
Sci Total Environ ; 824: 153790, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35150683

RESUMO

Mechanical vibrations and solar energy are ubiquitous in the environment. Hereon, we report the synergic enhancement of the oxidation by simultaneously harvesting solar and mechanical vibrations through flexible piezo and photocatalytic composite nanofiber mats. Surface enriched titanium dioxide nanoparticles incorporated in polyacrylonitrile (PAN/TiO2) nanofibers were synthesized using a single pot electrospinning process with well-defined fiber diameters with widely tunable loading density. By incorporating photocatalytic TiO2 in flexible piezoelectric PAN nanofiber support, piezoelectric fields generated under the mechanical deformation promote the separation of the photogenerated electrons and holes to accelerate oxidation of pollutants. Our results demonstrated that the catalytic activity of PAN/TiO2 nanofibers in photodegradation of Rhodamine B (RhB) can be greatly enhanced by environmental vibration-induced piezoelectricity of PAN nanofibers, with a maximum enhancement factor of ~2.5. The working mechanism for the enhanced photocatalytic activity of PAN/TiO2 nanofibers by the mechanical vibrations were attributed to the piezoelectric effect of PAN nanofibers, which could efficiently promote the separation of the photogenerated electrons and holes in the TiO2 nanoparticles. We believe the approach to enhancing the catalytic activity of mat can make full use of the polymer properties and natural energy, and it also can be extended to other composite polymer/semiconductor systems.


Assuntos
Recuperação e Remediação Ambiental , Nanofibras , Catálise , Polímeros , Titânio
4.
Sci Robot ; 6(61): eabi4523, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34851711

RESUMO

Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe3O4/Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines.

5.
Adv Mater ; 33(3): e2006367, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296108

RESUMO

Photothermal actuators have attracted increasing attention due to their ability to convert light energy into mechanical deformation and locomotion. This work reports a freestanding, multidirectional photothermal robot that can walk along a predesigned pathway by modulating laser polarization and on-off switching. Magnetic-plasmonic hybrid Fe3 O4 /Ag nanorods are synthesized using an unconventional templating approach. The coupled magnetic and plasmonic anisotropy allows control of the rod orientation, plasmonic excitation, and photothermal conversion by simply applying a magnetic field. Once the rods are fixed with desirable orientations in a bimorph actuator by magnetic-field-assisted lithography, the bending of the actuator can be controlled by switching the laser polarization. A bipedal robot is created by coupling the rod orientation with the alternating actuation of its two legs. Irradiating the robot by a laser with alternating or fixed polarization synergistically results in basic movement (backward and forward) and turning (including left-, right-, and U-turn), respectively. A complex walk along predesigned pathways can be potentially programmed by combining the movement and turning modes of the robots. This strategy provides an alternative driving mechanism for preparing functional soft robots, thus breaking through the limitations in the existing systems in terms of light sources and actuation manners.

6.
ACS Nano ; 14(12): 17419-17427, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33205947

RESUMO

The recent advancements in interfacial evaporation of salty water using renewable solar energy provide one of the promising pathways to solve worldwide water scarcity. Pursuing a stable evaporation rate of water has been the central focus of this field, as it is directly related to the throughput, while salt deposition on the evaporator becomes a critical issue. Although Janus-structured evaporators with an upper hydrophobic layer and a bottom hydrophilic layer have been demonstrated as an effective way to suppress the salt precipitation, the hydrophobic upper layer, achieved usually by some special organic groups, suffers from a photochemical oxidation when exposed to oxidative chemicals in water and high-energy light, resulting in a deteriorated surface hydrophobicity. Here, we report our design of an efficient salt-rejecting Janus evaporator by taking advantage of the self-recovering surface hydrophobicity of poly(dimethylsiloxane) (PDMS) against photochemical damages, which ensures a long-term surface hydrophobicity. With its upper layer partially covered with PDMS, the Janus evaporator demonstrates an excellent salt rejection capability and exhibits a stable evaporation rate of 1.38 kg·m-2·h-1 under 1 sun illumination for 400 min of continuous operation, or 90 d of intermittent work. By combining the advantages of high structural integration, long-term salt-rejection, and efficient evaporation, our Janus evaporator holds great promise for the stable production of clean water from seawater.

7.
Materials (Basel) ; 13(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963399

RESUMO

Ground granulated blast furnace slag (GGBFS) conventionally has been incorporated with ordinary Portland cement (OPC) owing to reduce the environmental load and enhance the engineering performance. Concrete with GGBFS shows different strength development of normal concrete, but sensitive, to exterior condition. Thus, a precise strength evaluation technique based on a quantitative model like full maturity model is required. Many studies have been performed on strength development of the concrete using equivalent age which is based on the apparent activation energy. In this process, it considers the effect of time and temperature simultaneously. However, the previous models on the apparent activation energy of concrete with mineral admixtures have limitation, and they have not considered the effect of temperature on strength development. In this paper, the apparent activation energy with GGBFS replacement ratio was calculated through several experiments and used to predict the compressive strength of GGBFS concrete. Concrete and mortar specimens with 0.6 water/binder ratio, and 0 to 60% GGBFS replacement were prepared. The apparent activation energy (Ea) was experimentally derived considering three different curing temperatures. Thermodynamic reactivity of GGBFS mixed concrete at different curing temperature was applied to evaluate the compressive strength model, and the experimental results were in good agreement with the model. The results show that when GGBFS replacement ratio was increased, there was a delay in compressive strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...