Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(48): 32537-32547, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901603

RESUMO

Stannous-based perovskite oxide materials are regarded as an important class of transparent conductive oxides for various fields of application. Enhancing the properties of such materials and facilitating the synthesis process are considered major challenging aspects for proper device applications. In the present paper, a comprehensive and detailed study of the properties of spray-coated CaSnO3 thin films onto the Si(100) substrate is reported. In addition, the substrate effect and the incorporation of rare-earth Nd3+ on engineering the characteristics of CaSnO3 thin films annealed at 800 °C are included. X-ray diffraction (XRD) analysis results revealed the orthorhombic structure of all the samples with an expansion of lattice spacing as the substitution of Nd at the Ca site increased. The Raman and FT-IR analysis further confirmed the structural results collected via the XRD analysis. Surface scanning using field-emission scanning electron microscopy revealed the formation of quasi-orthorhombic CaSnO3 grains with an increase in size as dopant content increased. Energy-dispersive X-ray analysis allowed quantification of the elements, while atomic mapping permitted visualizing their distribution along the surfaces. UV-visible spectroscopy and first-principles calculations using density functional theory (DFT) were conducted, and a thorough investigation of the optical and electronic properties of the pure material upon Nd3+ insertion was provided. Electrical properties collected at room temperature revealed a growing conductivity upon doping ratio increase with a simultaneous enhancement in the carrier concentrations and mobility. The findings of the present work will help facilitate the synthesis procedure of large-area stannous-based perovskite oxide thin films through simple and efficient chemical solution methods for optoelectronic device applications.

2.
RSC Adv ; 11(59): 37019-37028, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496399

RESUMO

The inorganic stannous-based perovskite oxide SrSnO3 has been utilized in various optoelectronic applications. Facilitating the synthesis process and engineering its properties, however, are still considered challenging due to several aspects. This paper reports on a thorough investigation of the influence of rare-earth (praseodymium) doping on the microstructural and optoelectronic properties of pure and Pr-doped SrSnO3 perovskite oxide thin films synthesized by a two-step simple chemical solution deposition route. Structural analysis indicated the high quality of the obtained phase and the alteration generated from the insertion of impurities. Surface scanning illustrated the formation of homogenous and crack-free SrSnO3 thin films with a nanorod morphology, with an augmentation in size as the dopant ratios increased. Optical properties analysis showed an enhancement in the samples optical absorption with wide-range bandgap tuning. First-principles calculations revealed the exchange interactions between the 3d-4f states and their impact on the electronic properties of the pristine material. Hall-effect measurements revealed an immense decrement in the resistivity of the films upon increment of doping ratios, passing from 7.3 × 10-2 Ω cm for the undoped sample to 4.8 × 10-2 Ω cm for 7% Pr content, while a reverse trend was observed on the carrier mobility, rising from 2.5 to 7.6 cm2 V-1 s-1 for 7% Pr content. The results emphasized the efficiency of the simple synthesis route to produce high-quality samples. The current findings will contribute to paving the way towards expanding the utilization of simple and cost-effective chemical solution deposition methods for the fast and large area growth of stannous-based perovskite oxides for optoelectronic applications.

3.
RSC Adv ; 11(41): 25686-25694, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478885

RESUMO

Delafossite materials are considered to be a promising range of transparent conductive oxides for optoelectronic applications. The complications that have held back their implementation in practical devices lie in the complex growth methods that are required and in the formation of undesirable secondary phases. Herein, a fast, simple, and low-cost deposition method allowing the deposition of high-quality 2H-CuFeO2 nanostructured thin films is employed. The effect of Sr doping on the properties of spray-coated CuFeO2 thin film annealed at 850 °C is reported. X-ray diffraction (XRD) analysis revealed the delafossite structures of all the samples corresponding to the 2H-CuFeO2 phase. The lattice spacing decreased with increasing substitution of Sr at the Cu site. Raman analysis further authenticated the structural results collected via XRD analysis. Surface scanning using field-emission scanning electron microscopy revealed the formation of nanostructured CuFeO2 thin film possessing high crystalline quality, with the nanocrystal size increasing as the dopant content was increased. Energy-dispersive X-ray analysis allowed the quantification of the elements content via determining the ratios of the main elements as well as the dopant content in each sample. The optical properties of the samples showed strong light absorption in the visible region with a decrease in the band gap values with Sr insertion. First-principles calculations using density functional theory (DFT) were conducted to strengthen the experimental findings regarding the nature of the bonds in the hexagonal lattice of the CuFeO2 compound and the effect of Sr doping on its characteristics. The electrical properties measured at room temperature revealed p-type conductivity with tunable resistivity, while the samples displayed increased electron mobility as a function of the dopant content. Consequently, our work introduced an efficient and cost-effective synthesis route for the preparation of high-quality nanostructured 2H-CuFeO2 thin films, paving the way to facilitate further device applications.

4.
RSC Adv ; 9(38): 22057-22063, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518893

RESUMO

Studying the shape-dependent structural and magnetic properties of nanoparticles is one of the most necessary scientific challenges in order to match these nano-objects for adequate applications. In this research paper, the shape effect of iron nanoparticles (FeNPs) on structural and magnetic properties was investigated on the basis of a combination of Molecular Statics (MS) and Monte Carlo (MC) simulations. To this end, three kinds of FeNP shapes (such as spherical, planar and rod) in an equal volume have been considered. The coordination number distribution of FeNPs obtained from the data extracted by MS simulations was exploited for performing MC simulations on the familiar Ising model. The numerical findings obtained showed that the structural stability, the Curie temperature as well as the shape of the hysteresis loop are correlated with the FeNP shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...