Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Multimed Tools Appl ; : 1-23, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37362692

RESUMO

Corona Virus (COVID-19) could be considered as one of the most devastating pandemics of the twenty-first century. The effective and the rapid screening of infected patients could reduce the mortality and even the contagion rate. Chest X-ray radiology could be designed as one of the effective screening techniques for COVID-19 exploration. In this paper, we propose an advanced approach based on deep learning architecture to automatic and effective screening techniques dedicated to the COVID-19 exploration through chest X-ray (CXR) imaging. Despite the success of state-of-the-art deep learning-based models for COVID-19 detection, they might suffer from several problems such as the huge memory and the computational requirement, the overfitting effect, and the high variance. To alleviate these issues, we investigate the Transfer Learning to the Efficient-Nets models. Next, we fine-tuned the whole network to select the optimal hyperparameters. Furthermore, in the preprocessing step, we consider an intensity-normalization method succeeded by some data augmentation techniques to solve the imbalanced dataset classes' issues. The proposed approach has presented a good performance in detecting patients attained by COVID-19 achieving an accuracy rate of 99.0% and 98% respectively using training and testing datasets. A comparative study over a publicly available dataset with the recently published deep-learning-based architectures could attest the proposed approach's performance.

2.
Med Biol Eng Comput ; 59(1): 85-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231848

RESUMO

Compressed Sensing Magnetic Resonance Imaging (CS-MRI) could be considered a challenged task since it could be designed as an efficient technique for fast MRI acquisition which could be highly beneficial for several clinical routines. In fact, it could grant better scan quality by reducing motion artifacts amount as well as the contrast washout effect. It offers also the possibility to reduce the exploration cost and the patient's anxiety. Recently, Deep Learning Neuronal Network (DL) has been suggested in order to reconstruct MRI scans with conserving the structural details and improving parallel imaging-based fast MRI. In this paper, we propose Deep Convolutional Encoder-Decoder architecture for CS-MRI reconstruction. Such architecture bridges the gap between the non-learning techniques, using data from only one image, and approaches using large training data. The proposed approach is based on autoencoder architecture divided into two parts: an encoder and a decoder. The encoder as well as the decoder has essentially three convolutional blocks. The proposed architecture has been evaluated through two databases: Hammersmith dataset (for the normal scans) and MICCAI 2018 (for pathological MRI). Moreover, we extend our model to cope with noisy pathological MRI scans. The normalized mean square error (NMSE), the peak-to-noise ratio (PSNR), and the structural similarity index (SSIM) have been adopted as evaluation metrics in order to evaluate the proposed architecture performance and to make a comparative study with the state-of-the-art reconstruction algorithms. The higher PSNR and SSIM values as well as the lowest NMSE values could attest that the proposed architecture offers better reconstruction and preserves textural image details. Furthermore, the running time is about 0.8 s, which is suitable for real-time processing. Such results could encourage the neurologist to adopt it in their clinical routines. Graphical abstract.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Redes Neurais de Computação
3.
J Digit Imaging ; 33(4): 903-915, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32440926

RESUMO

Accurate and fully automatic brain tumor grading from volumetric 3D magnetic resonance imaging (MRI) is an essential procedure in the field of medical imaging analysis for full assistance of neuroradiology during clinical diagnosis. We propose, in this paper, an efficient and fully automatic deep multi-scale three-dimensional convolutional neural network (3D CNN) architecture for glioma brain tumor classification into low-grade gliomas (LGG) and high-grade gliomas (HGG) using the whole volumetric T1-Gado MRI sequence. Based on a 3D convolutional layer and a deep network, via small kernels, the proposed architecture has the potential to merge both the local and global contextual information with reduced weights. To overcome the data heterogeneity, we proposed a preprocessing technique based on intensity normalization and adaptive contrast enhancement of MRI data. Furthermore, for an effective training of such a deep 3D network, we used a data augmentation technique. The paper studied the impact of the proposed preprocessing and data augmentation on classification accuracy.Quantitative evaluations, over the well-known benchmark (Brats-2018), attest that the proposed architecture generates the most discriminative feature map to distinguish between LG and HG gliomas compared with 2D CNN variant. The proposed approach offers promising results outperforming the recently supervised and unsupervised state-of-the-art approaches by achieving an overall accuracy of 96.49% using the validation dataset. The obtained experimental results confirm that adequate MRI's preprocessing and data augmentation could lead to an accurate classification when exploiting CNN-based approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
4.
J Med Imaging (Bellingham) ; 6(4): 044002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31620548

RESUMO

We investigate a new preprocessing approach for MRI glioblastoma brain tumors. Based on combined denoising technique (bilateral filter) and contrast-enhancement technique (automatic contrast stretching based on image statistical information), the proposed approach offers competitive results while preserving the tumor region's edges and original image's brightness. In order to evaluate the proposed approach's performance, quantitative evaluation has been realized through the Multimodal Brain Tumor Segmentation (BraTS 2015) dataset. A comparative study between the proposed method and four state-of-the art preprocessing algorithm attests that the proposed approach could yield a competitive performance for magnetic resonance brain glioblastomas tumor preprocessing. In fact, the result of this step of image preprocessing is very crucial for the efficiency of the remaining brain image processing steps: i.e., segmentation, classification, and reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...