Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Genome ; : e20410, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974527

RESUMO

Tetraploid wheats (Triticum turgidum L.), including durum wheat (T. turgidum ssp. durum (Desf.) Husn.), are important crops with high nutritional and cultural values. However, their production is constrained by sensitivity to environmental conditions. In search of adaptive genetic signatures tracing historical selection and hybridization events, we performed genome scans on two datasets: (1) Durum Global Diversity Panel comprising a total of 442 tetraploid wheat and wild progenitor accessions including durum landraces (n = 286), domesticated emmer (T. turgidum ssp. dicoccum (Schrank) Thell.; n = 103) and wild emmer (T. turgidum ssp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.; n = 53) wheats genotyped using the 90K single nucleotide polymorphism (SNP) array, and (2) a second dataset comprising a total 121 accessions of nine T. turgidum subspecies including wild emmer genotyped with >100 M SNPs from whole-genome resequencing. The genome scan on the first dataset detected six outlier loci on chromosomes 1A, 1B, 3A (n = 2), 6A, and 7A. These loci harbored important genes for adaptation to abiotic stresses, phenological responses, such as seed dormancy, circadian clock, flowering time, and key yield-related traits, including pleiotropic genes, such as HAT1, KUODA1, CBL1, and ZFN1. The scan on the second dataset captured a highly differentiated region on chromosome 2B that shows significant differentiation between two groups: one group consists of Georgian (T. turgidum ssp. paleocolchicum A. Love & D. Love) and Persian (T. turgidum ssp. carthlicum (Nevski) A. Love & D. Love) wheat accessions, while the other group comprises all the remaining tetraploids including wild emmer. This is consistent with a previously reported introgression in this genomic region from T. timopheevii Zhuk. which naturally cohabit in the Georgian and neighboring areas. This region harbored several adaptive genes, including the thermomorphogenesis gene PIF4, which confers temperature-resilient disease resistance and regulates other biological processes. Genome scans can be used to fast-track germplasm housed in gene banks and in situ; which helps to identify environmentally resilient accessions for breeding and/or to prioritize them for conservation.

2.
Front Plant Sci ; 14: 1182548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900749

RESUMO

Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.

3.
Front Plant Sci ; 14: 1190358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680355

RESUMO

Fusarium head blight (FHB) is one the most globally destructive fungal diseases in wheat and other small grains, causing a reduction in grain yield by 10-70%. The present study was conducted in a panel of historical and modern Canadian spring wheat (Triticum aestivum L.) varieties and lines to identify new sources of FHB resistance and map associated quantitative trait loci (QTLs). We evaluated 249 varieties and lines for reaction to disease incidence, severity, and visual rating index (VRI) in seven environments by artificially spraying a mixture of four Fusarium graminearum isolates. A subset of 198 them were genotyped with the Wheat 90K iSelect single nucleotide polymorphisms (SNPs) array. Genome-wide association mapping performed on the overall best linear unbiased estimators (BLUE) computed from all seven environments and the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map of 26,449 polymorphic SNPs out of the 90K identified sixteen FHB resistance QTLs that individually accounted for 5.7-10.2% of the phenotypic variance. The positions of two of the FHB resistance QTLs overlapped with plant height and flowering time QTLs. Four of the QTLs (QFhb.dms-3B.1, QFhb.dms-5A.5, QFhb.dms-5A.7, and QFhb.dms-6A.4) were simultaneously associated with disease incidence, severity, and VRI, which accounted for 27.0-33.2% of the total phenotypic variance in the combined environments. Three of the QTLs (QFhb.dms-2A.2, QFhb.dms-2D.2, and QFhb.dms-5B.8) were associated with both incidence and VRI and accounted for 20.5-22.1% of the total phenotypic variance. In comparison with the VRI of the checks, we identified four highly resistant and thirty-three moderately resistant lines and varieties. The new FHB sources of resistance and the physical map of the associated QTLs would provide wheat breeders valuable information towards their efforts in developing improved varieties in western Canada.

4.
Front Plant Sci ; 14: 1134132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284725

RESUMO

Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.

5.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176097

RESUMO

Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Melhoramento Vegetal , Ploidias , Aclimatação , Polimorfismo de Nucleotídeo Único
6.
Front Plant Sci ; 14: 1145371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998679

RESUMO

Introduction: Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods: We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results: Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion: The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.

7.
Plant J ; 114(1): 209-224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710629

RESUMO

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiose/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
8.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365358

RESUMO

The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future.

9.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807690

RESUMO

Some previous studies have assessed the predictive ability of genome-wide selection on stripe (yellow) rust resistance in wheat, but the effect of genotype by environment interaction (GEI) in prediction accuracies has not been well studied in diverse genetic backgrounds. Here, we compared the predictive ability of a model based on phenotypic data only (M1), the main effect of phenotype and molecular markers (M2), and a model that incorporated GEI (M3) using three cross-validations (CV1, CV2, and CV0) scenarios of interest to breeders in six spring wheat populations. Each population was evaluated at three to eight field nurseries and genotyped with either the DArTseq technology or the wheat 90K single nucleotide polymorphism arrays, of which a subset of 1,058- 23,795 polymorphic markers were used for the analyses. In the CV1 scenario, the mean prediction accuracies of the M1, M2, and M3 models across the six populations varied from -0.11 to -0.07, from 0.22 to 0.49, and from 0.19 to 0.48, respectively. Mean accuracies obtained using the M3 model in the CV1 scenario were significantly greater than the M2 model in two populations, the same in three populations, and smaller in one population. In both the CV2 and CV0 scenarios, the mean prediction accuracies of the three models varied from 0.53 to 0.84 and were not significantly different in all populations, except the Attila/CDC Go in the CV2, where the M3 model gave greater accuracy than both the M1 and M2 models. Overall, the M3 model increased prediction accuracies in some populations by up to 12.4% and decreased accuracy in others by up to 17.4%, demonstrating inconsistent results among genetic backgrounds that require considering each population separately. This is the first comprehensive genome-wide prediction study that investigated details of the effect of GEI on stripe rust resistance across diverse spring wheat populations.

10.
Theor Appl Genet ; 135(8): 2747-2767, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35737008

RESUMO

KEY MESSAGE: This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Genoma , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética
11.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456370

RESUMO

Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat.


Assuntos
Basidiomycota , Fusarium , Basidiomycota/genética , Canadá , Resistência à Doença/genética , Fusarium/genética , Doenças das Plantas/genética , Triticum/genética
12.
Theor Appl Genet ; 135(4): 1143-1162, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306567

RESUMO

KEY MESSAGE: A major QTL on chromosome arm 4BS was associated with reduced spike shattering and reduced plant height in coupling phase, and a second major QTL associated with reduced spike shattering was detected on chromosome arm 5AL in the same wheat variety Carberry. Spike shattering can cause severe grain yield loss in wheat. Development of cultivars with reduced shattering but having easy mechanical threshability is the target of wheat breeding programs. This study was conducted to determine quantitative trait loci (QTL) associated with shattering resistance, and epistasis among QTL in the populations Carberry/AC Cadillac and Carberry/Thatcher. Response of the populations to spike shattering was evaluated near Swift Current, SK, in four to five environments. Plant height data recorded in different locations and years were used to determine the relationship of the trait with spike shattering. Each population was genotyped and mapped with the wheat 90 K Illumina iSelect SNP array. Main effect QTL were analyzed by MapQTL 6, and epistatic interactions between main effect QTL were determined by QTLNetwork 2.0. Correlations between height and shattering ranged from 0.15 to 0.49. Carberry contributed two major QTL associated with spike shattering on chromosome arms 4BS and 5AL, detected in both populations. Carberry also contributed two minor QTL on 7AS and 7AL. AC Cadillac contributed five minor QTL on 1AL, 2DL, 3AL, 3DL and 7DS. Nine epistatic QTL interactions were identified, out of which the most consistent and synergistic interaction, that reduced the expression of shattering, occurred between 4BS and 5AL QTL. The 4BS QTL was consistently associated with reduced shattering and reduced plant height in the coupling phase. The present findings shed light on the inheritance of shattering resistance and provide genetic markers for manipulating the trait to develop wheat cultivars.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Basidiomycota/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
14.
Theor Appl Genet ; 135(2): 537-552, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34724078

RESUMO

KEY MESSAGE: Using phenotype data of three spring wheat populations evaluated at 6-15 environments under two management systems, we found moderate to very high prediction accuracies across seven traits. The phenotype data collected under an organic management system effectively predicted the performance of lines in the conventional management and vice versa. There is growing interest in developing wheat cultivars specifically for organic agriculture, but we are not aware of the effect of organic management on the predictive ability of genomic selection (GS). Here, we evaluated within populations prediction accuracies of four GS models, four combinations of training and testing sets, three reaction norm models, and three random cross-validations (CV) schemes in three populations phenotyped under organic and conventional management systems. Our study was based on a total of 578 recombinant inbred lines and varieties from three spring wheat populations, which were evaluated for seven traits at 3-9 conventionally and 3-6 organically managed field environments and genotyped either with the wheat 90 K SNP array or DArTseq. We predicted the management systems (CV0M) or environments (CV0), a subset of lines that have been evaluated in either management (CV2M) or some environments (CV2), and the performance of newly developed lines in either management (CV1M) or environments (CV1). The average prediction accuracies of the model that incorporated genotype × environment interactions with CV0 and CV2 schemes varied from 0.69 to 0.97. In the CV1 and CV1M schemes, prediction accuracies ranged from - 0.12 to 0.77 depending on the reaction norm models, the traits, and populations. In most cases, grain protein showed the highest prediction accuracies. The phenotype data collected under the organic management effectively predicted the performance of lines under conventional management and vice versa. This is the first comprehensive GS study that investigated the effect of the organic management system in wheat.


Assuntos
Genômica , Triticum , Genoma de Planta , Genótipo , Fenótipo , Triticum/genética
15.
Sci Rep ; 11(1): 23773, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893626

RESUMO

Previous molecular characterization studies conducted in Canadian wheat cultivars shed some light on the impact of plant breeding on genetic diversity, but the number of varieties and markers used was small. Here, we used 28,798 markers of the wheat 90K single nucleotide polymorphisms to (a) assess the extent of genetic diversity, relationship, population structure, and divergence among 174 historical and modern Canadian spring wheat varieties registered from 1905 to 2018 and 22 unregistered lines (hereinafter referred to as cultivars), and (b) identify genomic regions that had undergone selection. About 91% of the pairs of cultivars differed by 20-40% of the scored alleles, but only 7% of the pairs had kinship coefficients of < 0.250, suggesting the presence of a high proportion of redundancy in allelic composition. Although the 196 cultivars represented eight wheat classes, our results from phylogenetic, principal component, and the model-based population structure analyses revealed three groups, with no clear structure among most wheat classes, breeding programs, and breeding periods. FST statistics computed among different categorical variables showed little genetic differentiation (< 0.05) among breeding periods and breeding programs, but a diverse level of genetic differentiation among wheat classes and predicted groups. Diversity indices were the highest and lowest among cultivars registered from 1970 to 1980 and from 2011 to 2018, respectively. Using two outlier detection methods, we identified from 524 to 2314 SNPs and 41 selective sweeps of which some are close to genes with known phenotype, including plant height, photoperiodism, vernalization, gluten strength, and disease resistance.


Assuntos
Variação Genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética , Triticum/genética , Alelos , Canadá , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/classificação
16.
Theor Appl Genet ; 134(11): 3699-3719, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333664

RESUMO

KEY MESSAGE: Using phenotypic data of four biparental spring wheat populations evaluated at multiple environments under two management systems, we discovered 152 QTL and 22 QTL hotspots, of which two QTL accounted for up to 37% and 58% of the phenotypic variance, consistently detected in all environments, and fell within genomic regions harboring known genes. Identification of the physical positions of quantitative trait loci (QTL) would be highly useful for developing functional markers and comparing QTL results across multiple independent studies. The objectives of the present study were to map and characterize QTL associated with nine agronomic and end-use quality traits (tillering ability, plant height, lodging, grain yield, grain protein content, thousand kernel weight, test weight, sedimentation volume, and falling number) in hard red spring wheat recombinant inbred lines (RILs) using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. We evaluated a total of 698 RILs from four populations derived from crosses involving seven parents at 3-8 conventionally (high N) and organically (low N) managed field environments. Using the phenotypic data combined across all environments per management, and the physical map between 1058 and 6526 markers per population, we identified 152 QTL associated with the nine traits, of which 29 had moderate and 2 with major effects. Forty-nine of the 152 QTL mapped across 22 QTL hotspot regions with each region coincident to 2-6 traits. Some of the QTL hotspots were physically located close to known genes. QSv.dms-1A and QPht.dms-4B.1 individually explained up to 37% and 58% of the variation in sedimentation volume and plant height, respectively, and had very large LOD scores that varied from 19.0 to 35.7 and from 16.7 to 55.9, respectively. We consistently detected both QTL in the combined and all individual environments, laying solid ground for further characterization and possibly for cloning.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Triticum/genética , Cruzamentos Genéticos , Variação Genética , Genótipo , Fenótipo
17.
Plants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922551

RESUMO

In previous studies, we reported quantitative trait loci (QTL) associated with the heading, flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) populations but the results are scattered in population-specific genetic maps, which is challenging to exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits evaluated at five conventionally managed environments in the 'Cutler' × 'AC Barrie' population; (ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements in the 'Attila' × 'CDC Go' population; (iii) 5731 SilicoDArT and SNP markers and the three traits evaluated at four conventional and organic management systems in the 'Peace' × 'Carberry' population; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically managed environments in the 'Peace' × 'CDC Stanley' population. Using composite interval mapping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23). Fifteen of the 44 QTL were common to both conventional and organic management systems, and the remaining QTL were specific to either the conventional (21) or organic (8) management systems. Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and further characterization.

18.
Front Plant Sci ; 12: 775383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069630

RESUMO

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry's leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.

19.
Theor Appl Genet ; 134(1): 381-398, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33135095

RESUMO

KEY MESSAGE: Genomic predictions across environments and within populations resulted in moderate to high accuracies but across-population genomic prediction should not be considered in wheat for small population size. Genomic selection (GS) is a marker-based selection suggested to improve the genetic gain of quantitative traits in plant breeding programs. We evaluated the effects of training population (TP) composition, cross-validation design, and genetic relationship between the training and breeding populations on the accuracy of GS in spring wheat (Triticum aestivum L.). Two populations of 231 and 304 spring hexaploid wheat lines that were phenotyped for six agronomic traits and genotyped with the wheat 90 K array were used to assess the accuracy of seven GS models (RR-BLUP, G-BLUP, BayesB, BL, RKHS, GS + de novo GWAS, and reaction norm) using different cross-validation designs. BayesB outperformed the other models for within-population genomic predictions in the presence of few quantitative trait loci (QTL) with large effects. However, including fixed-effect marker covariates gave better performance for an across-population prediction when the same QTL underlie traits in both populations. The accuracy of prediction was highly variable based on the cross-validation design, which suggests the importance to use a design that resembles the variation within a breeding program. Moderate to high accuracies were obtained when predictions were made within populations. In contrast, across-population genomic prediction accuracies were very low, suggesting that the evaluated models are not suitable for prediction across independent populations. On the other hand, across-environment prediction and forward prediction designs using the reaction norm model resulted in moderate to high accuracies, suggesting that GS can be applied in wheat to predict the performance of newly developed lines and lines in incomplete field trials.


Assuntos
Genômica , Modelos Genéticos , Locos de Características Quantitativas , Triticum/genética , Estudos de Associação Genética , Genética Populacional , Genótipo , Fenótipo , Melhoramento Vegetal , Poliploidia
20.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...