Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Digit Discov ; 3(8): 1509-1533, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118978

RESUMO

The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.2 release, and has underpinned multiple scientific studies. In this work, we highlight the latest features of the API format, accompanying software tools, and provide an update on the implementation of OPTIMADE in contributing materials databases. We end by providing several use cases that demonstrate the utility of the OPTIMADE API in materials research that continue to drive its ongoing development.

2.
Patterns (N Y) ; 3(10): 100588, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277819

RESUMO

Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings-most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(8): 1369-1375, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036102

RESUMO

The transverse magnetic Gaussian beam diffraction from a finite number, equally spaced and rectangular cross section dielectric cylinder row is studied. The infinitely long cylinders' axes are perpendicular to the beam's direction of propagation. The cylinder row, with dielectric constant εc=nc2, is treated as a periodic inhomogeneous film, with period ax and thickness wy, bounded by two semi-infinite homogeneous media. With this restriction, the method is valid only for square or rectangular cross section cylinders. The supercell and the plane wave expansion methods are used to calculate the eigenfrequencies and eigenvectors supported for a one-dimensional photonic crystal. Then, these eigenfrequencies and eigenvectors are used to expand the field in the inhomogeneous film. Numerical results are presented for ax greater than λ (the incident light wavelength), wx (the cylinder width), and wg (Gaussian beam waist). Two cases are studied. In the first (second) case, the unit cell contains one cylinder (a cylinder row), which simulates the scattering from a single cylinder (an inhomogeneous thin film). The total integrated scattering in transmission (reflection) shows three well-defined minima (maxima), which are due to interference effects. Its positions can be approximately obtained with the formula λk=4ncwy/k, with k=3, 4, and 6. The total integrated scattering in transmission decreases linearly as a function of the cylinder number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA