Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 9(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554487

RESUMO

Cells exposed to starvation have to adjust their metabolism to conserve energy and protect themselves. Protein synthesis is one of the major energy-consuming processes and as such has to be tightly controlled. Many mechanistic details about how starved cells regulate the process of protein synthesis are still unknown. Here, we report that the essential translation initiation factor eIF2B forms filaments in starved budding yeast cells. We demonstrate that filamentation is triggered by starvation-induced acidification of the cytosol, which is caused by an influx of protons from the extracellular environment. We show that filament assembly by eIF2B is necessary for rapid and efficient downregulation of translation. Importantly, this mechanism does not require the kinase Gcn2. Furthermore, analysis of site-specific variants suggests that eIF2B assembly results in enzymatically inactive filaments that promote stress survival and fast recovery of cells from starvation. We propose that translation regulation through filament assembly is an efficient mechanism that allows yeast cells to adapt to fluctuating environments.


Assuntos
Citoesqueleto/metabolismo , Metabolismo Energético , Fator de Iniciação 2B em Eucariotos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Estresse Fisiológico , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Modelos Biológicos , Fosforilação , Leveduras/fisiologia
2.
Mol Biol Cell ; 31(12): 1232-1245, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293990

RESUMO

Yeast cells, when exposed to stress, can enter a protective state in which cell division, growth, and metabolism are down-regulated. They remain viable in this state until nutrients become available again. How cells enter this protective survival state and what happens at a cellular and subcellular level are largely unknown. In this study, we used electron tomography to investigate stress-induced ultrastructural changes in the cytoplasm of yeast cells. After ATP depletion, we observed significant cytosolic compaction and extensive cytoplasmic reorganization, as well as the emergence of distinct membrane-bound and membraneless organelles. Using correlative light and electron microscopy, we further demonstrated that one of these membraneless organelles was generated by the reversible polymerization of eukaryotic translation initiation factor 2B, an essential enzyme in the initiation of protein synthesis, into large bundles of filaments. The changes we observe are part of a stress-induced survival strategy, allowing yeast cells to save energy, protect proteins from degradation, and inhibit protein functionality by forming assemblies of proteins.


Assuntos
Citoplasma/fisiologia , Metabolismo Energético/fisiologia , Estresse Fisiológico/fisiologia , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/fisiologia , Organelas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 9(1): 3680, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842594

RESUMO

Overexpression of recombinant proteins in bacteria may lead to their aggregation and deposition in inclusion bodies. Since the conformational properties of proteins in inclusion bodies exhibit many of the characteristics typical of amyloid fibrils. Based on these findings, we hypothesize that the rate at which proteins form amyloid fibrils may be predicted from their propensity to form inclusion bodies. To establish a method based on this concept, we first measured by SDS-PAGE and confocal microscopy the level of inclusion bodies in E. coli cells overexpressing the 40-residue amyloid-beta peptide, Aß40, wild-type and 24 charge mutants. We then compared these results with a number of existing computational aggregation propensity predictors as well as the rates of aggregation measured in vitro for selected mutants. Our results show a strong correlation between the level of inclusion body formation and aggregation propensity, thus demonstrating the power of this approach and its value in identifying factors modulating aggregation kinetics.


Assuntos
Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Escherichia coli/citologia , Corpos de Inclusão/metabolismo , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Humanos , Cinética , Microscopia Confocal , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Science ; 359(6371)2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301985

RESUMO

Despite the important role of prion domains in neurodegenerative disease, their physiological function has remained enigmatic. Previous work with yeast prions has defined prion domains as sequences that form self-propagating aggregates. Here, we uncovered an unexpected function of the canonical yeast prion protein Sup35. In stressed conditions, Sup35 formed protective gels via pH-regulated liquid-like phase separation followed by gelation. Phase separation was mediated by the N-terminal prion domain and regulated by the adjacent pH sensor domain. Phase separation promoted yeast cell survival by rescuing the essential Sup35 translation factor from stress-induced damage. Thus, prion-like domains represent conserved environmental stress sensors that facilitate rapid adaptation in unstable environments by modifying protein phase behavior.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Domínio Catalítico , Concentração de Íons de Hidrogênio , Fatores de Terminação de Peptídeos/química , Transição de Fase , Proteínas Priônicas/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química
5.
Elife ; 52016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27003292

RESUMO

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.


Assuntos
Citoplasma/química , Citoplasma/efeitos dos fármacos , Dictyostelium/fisiologia , Transição de Fase/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular , Concentração de Íons de Hidrogênio , Estresse Fisiológico
6.
Elife ; 4: e06807, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238190

RESUMO

RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Multimerização Proteica , Ribonucleoproteínas/metabolismo , Saccharomycetales/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomycetales/fisiologia , Estresse Fisiológico
7.
Elife ; 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24771766

RESUMO

One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...