Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 12(2): 346-359, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549216

RESUMO

Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51 ) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.


Assuntos
Cobamidas/biossíntese , Coenzimas/biossíntese , Desulfitobacterium/enzimologia , Enterobacteriaceae/enzimologia , Hidrolases/metabolismo , Complexo Vitamínico B/biossíntese
2.
Biochemistry ; 49(34): 7264-71, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20666406

RESUMO

Manganese peroxidase generally mediates the oxidation of Mn(2+) to Mn(3+) with H(2)O(2) as an oxidant. Several manganese peroxidases purified from different lignin-degrading fungi were found to mediate a fluoride-dependent conversion of organic substrates such as monochlorodimedone or 2,6-dimethoxyphenol in the absence of manganese ions. Using the manganese peroxidase MnP-1 from Bjerkandera adusta strain Ud1, these fluoride-dependent reactions were studied with respect to different substrates converted, reaction products, and kinetic properties to shed some light on the reaction mechanism of manganese peroxidase. The analysis of the reaction products formed from monochlorodimedone and 2,6-dimethoxyphenol showed that the substrates were oxidized rather than fluorinated. The addition of fluoride to MnP-1 resulted in altered absorption spectra, indicating a coordinative binding of fluoride or HF to the heme iron; the fluoride:heme stoichiometry was determined to be 1:1 and the K(D) value to be approximately 2.5 mM at pH 3.4. The high K(D) value indicates weak binding of fluoride to the heme. Fluoride appeared to act as a partially competitive inhibitor with respect to hydrogen peroxide for binding to the heme as the sixth ligand. From the findings, a putative model for the fluoride-dependent reaction was developed. The data were interpreted to indicate that changes of the reaction center of manganese peroxidase as, for example, caused by fluoride binding may lead to the oxidation of organic compounds in the absence of manganese by opening a long-range electron transfer pathway.


Assuntos
Fluoretos/metabolismo , Íons/metabolismo , Peroxidases/metabolismo , Transporte de Elétrons , Fungos/metabolismo , Heme/metabolismo , Peróxido de Hidrogênio , Manganês/metabolismo , Oxirredução , Pirogalol/análogos & derivados
3.
Chembiochem ; 9(12): 1913-20, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18655083

RESUMO

The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/química , Pseudomonas syringae/efeitos dos fármacos , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Arginina/biossíntese , Arginina/química , Arginina/isolamento & purificação , Arginina/farmacologia , Ecologia , Metiltransferases/química , Metiltransferases/metabolismo , Dados de Sequência Molecular , S-Adenosilmetionina/metabolismo
4.
Appl Environ Microbiol ; 70(8): 4575-81, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15294788

RESUMO

Agrocybe aegerita, a bark mulch- and wood-colonizing basidiomycete, was found to produce a peroxidase (AaP) that oxidizes aryl alcohols, such as veratryl and benzyl alcohols, into the corresponding aldehydes and then into benzoic acids. The enzyme also catalyzed the oxidation of typical peroxidase substrates, such as 2,6-dimethoxyphenol (DMP) or 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). A. aegerita peroxidase production depended on the concentration of organic nitrogen in the medium, and highest enzyme levels were detected in the presence of soybean meal. Two fractions of the enzyme, AaP I and AaP II, which had identical molecular masses (46 kDa) and isoelectric points of 4.6 to 5.4 and 4.9 to 5.6, respectively (corresponding to six different isoforms), were identified after several steps of purification, including anion- and cation-exchange chromatography. The optimum pH for the oxidation of aryl alcohols was found to be around 7, and the enzyme required relatively high concentrations of H(2)O(2) (2 mM) for optimum activity. The apparent K(m) values for ABTS, DMP, benzyl alcohol, veratryl alcohol, and H(2)O(2) were 37, 298, 1,001, 2,367 and 1,313 microM, respectively. The N-terminal amino acid sequences of the main AaP II spots blotted after two-dimensional gel electrophoresis were almost identical and exhibited almost no homology to the sequences of other peroxidases from basidiomycetes, but they shared the first three amino acids, as well as two additional amino acids, with the heme chloroperoxidase (CPO) from the ascomycete Caldariomyces fumago. This finding is consistent with the fact that AaP halogenates monochlorodimedone, the specific substrate of CPO. The existence of haloperoxidases in basidiomycetous fungi may be of general significance for the natural formation of chlorinated organic compounds in forest soils.


Assuntos
Agaricales/enzimologia , Álcoois/metabolismo , Aldeídos/metabolismo , Peroxidases/metabolismo , Sequência de Aminoácidos , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Meios de Cultura , Cicloexanonas/metabolismo , Dados de Sequência Molecular , Oxirredução , Peroxidases/química , Peroxidases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...