Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 158: 202-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26982503

RESUMO

Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Micrococcaceae/metabolismo , Prata/química , Luz Solar , Microscopia Eletrônica de Transmissão
2.
Appl Microbiol Biotechnol ; 100(10): 4627-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26767990

RESUMO

An antialgal compound was isolated from the cultured broth of Streptomyces jiujiangensis JXJ 0074(T) by using bioassay methods. Based on the data of (1)H-NMR, (13)C-NMR, ESI-MS, and thin layer chromatography, the active compound was identified as L-valine, which showed antialgal activity mainly against Microcystis. L-valine exhibited greater antialgal activities than both L-lysine and copper sulfate (CuSO4) did on Microcystis aeruginosa lawn. However, M. aeruginosa recovered growth earlier with higher growth rate in L-valine treatment than in L-lysine treatment. L-valine dissipated completely within 2 days, much quicker than L-lysine (6 days), which resulted in the lysing of more than 80 % M. aeruginosa cells and the release of amount of intracellular microcystin-LR (MC-LR) within 2 days. As a resultant, the extracellular MC-LR content was more than twice of the control from day 1 to 5. Exposure to L-valine significantly promoted the synthesis of MC-LR. L-lysine also promoted the release and synthesis of MC-LR with much lesser efficiency than L-valine. L-valine could damage Microcystis severely, causing perforation and collapse of M. aeruginosa cells and decrease of the chlorophyll. The superoxide dismutase (SOD) activity in L-valine-treated cells of M. aeruginosa initially increased with 32.94 ± 3.37 % higher than the control after 36 h and then decreased quickly. However, the increase rate of superoxide anion radical (O2 (-)) was much higher than that of SOD, which resulted in serious lipid peroxidation and accumulation of malondialdehyde (MDA). To our knowledge, this is the first report showing L-valine active against cyanobacteria.


Assuntos
Microcystis/efeitos dos fármacos , Streptomyces/química , Valina/química , Clorofila/metabolismo , Peroxidação de Lipídeos , Lisina/química , Malondialdeído/metabolismo , Toxinas Marinhas , Microcistinas/metabolismo , Superóxido Dismutase/metabolismo , Valina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...