Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 23(1): 125-138, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9817777

RESUMO

/ Management problems arise in semiarid rangeland that are characterized by marked wet and dry seasons because of forage deficiencies in the dry season. These natural vegetation rangelands can sustain livestock all year long when forage and senesced grass are available into the dry season. Seasonal range condition data are required to provide a basis for pasture management to help locate dry season cover and thereby minimize overstocking and degradation. The generation of seasonal data using Thematic Mapper (TM) imagery was undertaken to assess changes in natural vegetation cover in the southern Botswana Kalahari. Visual analysis of spectral reflectance curves, the development of spectral separability indexes, and conventional classification analysis techniques were used to identify and differentiate rangeland features. Results from reflectance curves indicated that most rangeland cover types could be preferentially distinguished using mainly wet season data, especially on the longer TM wavebands, and that range feature differentiation was more problematic on darker soils than on lighter soils. Spectral separability indexes (SSIs) confirmed that range feature separation varied considerably as a function of waveband and was more effective in the wet than the dry season. The SSIs also showed that range feature differentiation in both seasons was most effective using a combination of the chlorophyll absorpance band (TM3) and two mid-infrared bands (TM5 and TM7). Wet season data were more effectively classified in terms of range features than dry season data although some class similarity was inferred across the two classified data sets. The work shows that overall trends may be generated by comparing seasonal data sets, thereby providing an overall basis for dry season decision making. However, particular problems arise within the dry season data sets probably because of spectral similarities between shadow and darkened vegetation cover, thereby implying that further work is needed. KEY WORDS: Semiarid rangelands; Botswana; Kalahari; Spectral differentiation; Seasonal change; Darkened vegetation cover

2.
J Biol Chem ; 270(47): 28108-17, 1995 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-7499299

RESUMO

Cysteines 14, 21, 34, 51, or 58 in PsaC of photosystem I (PS I) were replaced with aspartic acid (C21D and C58D), serine (C14S, C34S, and C51S), and alanine (C14A, C34A, and C51A). When free in solution, the C34S and C34A holoproteins contained two S = 1/2 ground state [4Fe-4S] clusters; all other mutant proteins contained [3Fe-4S] clusters and [4Fe-4S] clusters; in addition, there was evidence in C14S, C51S, C14A, and C51A for high spin (S = 3/2) [4Fe-4S] clusters, presumably in the modified site. These findings are consistent with the assignment of C14, C21, C51, and C58, but not C34, as ligands to FA and FB. The [4Fe-4S] clusters in the unmodified sites in C14S, C51S, C14A, and C51A remained highly electronegative, with Em values ranging from -495 to -575 mV. The [3Fe-4S] clusters in the modified sites were driven 400 to 450 mV more oxidizing than the native [4Fe-4S] clusters, with Em values ranging from -98 mV to -171 mV. A C14D/C51D double mutant contains [3Fe-4S] and S = 1/2 [4Fe-4S] clusters, showing that the 3Cys.1Asp motif is also able to accommodate a low spin cubane. When C34S, C34A, C14S, C51S, C14A, and C51A were rebound to P700-FX cores, electron transfer to FA/FB was regained, but functional reconstitution has not yet been achieved for C21D, C58D, or C14D/C51D. These data imply that PsaC requires two iron-sulfur clusters to refold, one of which must be a cubane. Since two [4Fe-4S] clusters are found in all reconstituted PS I complexes, the presence of two cubanes in free PsaC may be a necessary precondition for binding to P700-FX cores.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana , Complexo de Proteína do Fotossistema I , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Cianobactérias/metabolismo , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Micro-Ondas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Peptococcus/metabolismo , Proteínas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Tempo
3.
J Parasitol ; 63(1): 178-9, 1977 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-845738
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...