Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 18(1): 6, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225612

RESUMO

BACKGROUND: Neurological gait disorders are mainly classified based on clinical observation, and therefore difficult to objectify or quantify. Movement analysis systems provide objective parameters, which may increase diagnostic accuracy and may aid in monitoring the disease course. Despite the increasing wealth of kinematic movement and balance parameter data, the discriminative value for the differentiation of neurological gait disorders is still unclear. We hypothesized that kinematic motion and balance parameter metrics would be differently altered across neurological gait disorders when compared to healthy controls. METHODS: Thirty one patients (9 normal pressure hydrocephalus < NPH > , 16 cervical myelopathy < CM > , 6 lumbar stenosis < LST >) and 14 healthy participants were investigated preoperatively in an outpatient setting using an inertial measurement system (MyoMotion) during 3 different walking tasks (normal walking, dual-task walking with simultaneous backward counting, fast walking). In addition, the natural postural sway of participants was measured by pedobarography, with the eyes opened and closed. The range of motion (ROM) in different joint angles, stride time, as well as sway were compared between different groups (between-subject factor), and different task conditions (within-subject factor) by a mixed model ANOVA. RESULTS: Kinematic metrics and balance parameters were differently altered across different gait disorders compared to healthy controls. Overall, NPH patients significantly differed from controls in all movement parameters except for stride time, while they differed in balance parameters only with regard to AP movement. LST patients had significantly reduced ROMs of the shoulders, hips, and ankles, with significantly altered balance parameters regarding AP movement and passed center-of-pressure (COP) distance. CM patients differed from controls only in the ROM of the hip and ankle, but were affected in nearly all balance parameters, except for force distribution. CONCLUSION: The application of inertial measurement systems and pedobarography is feasible in an outpatient setting in patients with different neurological gait disorders. Rather than defining singular discriminative values, kinematic gait and balance metrics may provide characteristic profiles of movement parameter alterations in the sense of specific ´gait signatures´ for different pathologies, which could improve diagnostic accuracy by defining objective and quantifiable measures for the discrimination of different neurological gait disorders. TRIAL REGISTRATION: The study was retrospectively registered on the 27th of March 2023 in the 'Deutsches Register für Klinische Studien' under the number DRKS00031555.

2.
Sci Rep ; 13(1): 20366, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990121

RESUMO

Diffusion-MRI (dMRI) measures molecular diffusion, which allows to characterize microstructural properties of the human brain. Gliomas strongly alter these microstructural properties. Delineation of brain tumors currently mainly relies on conventional MRI-techniques, which are, however, known to underestimate tumor volumes in diffusely infiltrating glioma. We hypothesized that dMRI is well suited for tumor delineation, and developed two different deep-learning approaches. The first diffusion-anomaly detection architecture is a denoising autoencoder, the second consists of a reconstruction and a discrimination network. Each model was exclusively trained on non-annotated dMRI of healthy subjects, and then applied on glioma patients' data. To validate these models, a state-of-the-art supervised tumor segmentation network was modified to generate groundtruth tumor volumes based on structural MRI. Compared to groundtruth segmentations, a dice score of 0.67 ± 0.2 was obtained. Further inspecting mismatches between diffusion-anomalous regions and groundtruth segmentations revealed, that these colocalized with lesions delineated only later on in structural MRI follow-up data, which were not visible at the initial time of recording. Anomaly-detection methods are suitable for tumor delineation in dMRI acquisitions, and may further enhance brain-imaging analysis by detection of occult tumor infiltration in glioma patients, which could improve prognostication of disease evolution and tumor treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador/métodos
3.
Cancers (Basel) ; 15(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345051

RESUMO

Previous studies suggest that the topological properties of structural and functional neural networks in glioma patients are altered beyond the tumor location. These alterations are due to the dynamic interactions with large-scale neural circuits. Understanding and describing these interactions may be an important step towards deciphering glioma disease evolution. In this study, we analyze structural and functional brain networks in terms of determining the correlation between network robustness and topological features regarding the default-mode network (DMN), comparing prognostically differing patient groups to healthy controls. We determine the driver nodes of these networks, which are receptive to outside signals, and the critical nodes as the most important elements for controllability since their removal will dramatically affect network controllability. Our results suggest that network controllability and robustness of the DMN is decreased in glioma patients. We found losses of driver and critical nodes in patients, especially in the prognostically less favorable IDH wildtype (IDHwt) patients, which might reflect lesion-induced network disintegration. On the other hand, topological shifts of driver and critical nodes, and even increases in the number of critical nodes, were observed mainly in IDH mutated (IDHmut) patients, which might relate to varying degrees of network plasticity accompanying the chronic disease course in some of the patients, depending on tumor growth dynamics. We hereby implement a novel approach for further exploring disease evolution in brain cancer under the aspects of neural network controllability and robustness in glioma patients.

5.
Brain Sci ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358389

RESUMO

Metacognition has only scarcely been investigated in brain tumor patients. It is unclear if and how the tumor-lesioned brain might be able to maintain an adequate sense-of-self. As cortical midline structures (CMS) are regarded as essential for self-referential mental activity, we investigated resting-state fMRI connectivity (FC) of CMS to the default-mode network (DMN) and to the whole brain, comparing glioma patients and matched controls. Subjects furthermore performed a trait judgement (TJ), a trait recall task (TR), and neuropsychological testing. In the TJ, adjectives had to be ascribed as self- or non-self-describing, assessing the self-serving effect (SSE), a normally observed bias for positive traits. In the TR, the mnemic neglect effect (MNE), a memory advantage for positive traits, was tested. The groups were compared and partial correlations between FC and test metrics were analyzed. Although patients were significantly impaired in terms of verbal memory, groups did not differ in the SSE or the MNE results, showing preserved metacognitive abilities in patients. FC of CMS to the DMN was maintained, but was significantly decreased to whole brain in the patients. FC of the dorsomedial prefrontal cortex (DMPFC) to whole brain was correlated with the MNE in patients. Preserving the DMPFC in therapeutic interventions might be relevant for maintaining self-related verbal information processing in the memory domain in glioma patients.

6.
Sci Rep ; 11(1): 16790, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408195

RESUMO

With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Glioma/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Glioma/patologia , Glioma/ultraestrutura , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Giro do Cíngulo/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/ultraestrutura
7.
PLoS One ; 15(9): e0239475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976545

RESUMO

Diffusion-weighted MRI makes it possible to quantify subvoxel brain microstructure and to reconstruct white matter fiber trajectories with which structural connectomes can be created. However, at the border between cerebrospinal fluid and white matter, or in the presence of edema, the obtained MRI signal originates from both the cerebrospinal fluid as well as from the white matter partial volume. Diffusion tractography can be strongly influenced by these free water partial volume effects. Thus, including a free water model can improve diffusion tractography in glioma patients. Here, we analyze how including a free water model influences structural connectivity estimates in healthy subjects as well as in brain tumor patients. During a clinical study, we acquired diffusion MRI data of 35 glioma patients and 28 age- and sex-matched controls, on which we applied an open-source deep learning based free water model. We performed deterministic as well as probabilistic tractography before and after free water modeling, and utilized the tractograms to create structural connectomes. Finally, we performed a quantitative analysis of the connectivity matrices. In our experiments, the number of tracked diffusion streamlines increased by 13% for high grade glioma patients, 9.25% for low grade glioma, and 7.65% for healthy controls. Intra-subject similarity of hemispheres increased significantly for the patient as well as for the control group, with larger effects observed in the patient group. Furthermore, inter-subject differences in connectivity between brain tumor patients and healthy subjects were reduced when including free water modeling. Our results indicate that free water modeling increases the similarity of connectivity matrices in brain tumor patients, while the observed effects are less pronounced in healthy subjects. As the similarity between brain tumor patients and healthy controls also increased, connectivity changes in brain tumor patients may have been overestimated in studies that did not perform free water modeling.


Assuntos
Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Glioma/patologia , Água/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Conectoma/métodos , Aprendizado Profundo , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Substância Branca/patologia , Adulto Jovem
8.
Hum Brain Mapp ; 41(16): 4549-4561, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32716597

RESUMO

Resting-state functional MRI (rs-fMRI) allows mapping temporally coherent brain networks, and intra- and inter-network alterations have been described in different diseases. This prospective study investigated hemispheric resting-state functional connectivity (RSFC) differences in the default-mode network (DMN) and fronto-parietal network (FPN) between patients with left- and right-hemispheric gliomas (LH PAT, RH PAT), addressing asymmetry effects the tumor might have on network-specific intrinsic functional connectivity under consideration of the prognostically relevant isocitrate-dehydrogenase (IDH) mutation status. Twenty-seven patients (16 LH PAT, 12 IDH-wildtype) and 27 healthy controls underwent anatomical and rs-fMRI as well as neuropsychological assessment. Independent component analyses were performed to identify the DMN and FPN. Hemispheric DMN- and FPN-RSFC were computed, compared across groups, and correlated with cognitive performance. Patient groups did not differ in tumor volume, grade or location. RH PAT showed higher contra-tumoral DMN-RSFC than controls and LH PAT. With regard to the FPN, contra-tumoral RSFC was increased in both patient groups as compared to controls. Higher contra-tumoral RSFC was associated with worse cognitive performance in patients, which, however, seemed to apply mainly to IDH-wildtype patients. The benefit of RSFC alterations for cognitive performance varied depending on the affected hemisphere, cognitive demand, and seemed to be altered by IDH-mutation status. At the time of study initiation, a clinical trial registration was not mandatory at our faculty, but it can be applied for if requested.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Glioma/fisiopatologia , Imageamento por Ressonância Magnética , Adulto , Idoso , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Feminino , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa , Testes Neuropsicológicos
9.
Front Oncol ; 9: 536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293974

RESUMO

Immunohistochemical data based on isocitrate-dehydrogenase (IDH) mutation status have redefined glioma as a whole-brain disease, while occult tumor cell invasion along white matter fibers is inapparent in conventional magnetic resonance imaging (MRI). The functional and prognostic impact of focal glioma may however relate to the extent of white matter involvement. We used diffusion tensor imaging (DTI) to investigate microstructural characteristics of whole-brain normal-appearing white matter (NAWM) in relation to cognitive functions as potential surrogates for occult white matter involvement in glioma. Twenty patients (12 IDH-mutated) and 20 individually matched controls were preoperatively examined using DTI combined with a standardized neuropsychological examination. Tumor lesions including perifocal edema were masked, and fractional anisotropy (FA) as well as mean, radial, and axial diffusivity (MD, RD, and AD, respectively) of the remaining whole-brain NAWM were determined by using Tract-Based Spatial Statistics and histogram analyses. The relationship between extratumoral white matter integrity and cognitive performance was examined using partial correlation analyses controlling for age, education, and lesion volumes. In patients, mean FA and AD were decreased as compared to controls, which agrees with the notion of microstructural impairment of NAWM in glioma patients. Patients performed worse in all cognitive domains tested, and higher anisotropy and lower MD and RD values of NAWM were associated with better cognitive performance. In additional analyses, IDH-mutated and IDH-wildtype patients were compared. Patients with IDH-mutation showed higher FA, but lower MD, AD, and RD values as compared to IDH-wildtype patients, suggesting a better preserved microstructural integrity of NAWM, which may relate to a less infiltrative nature of IDH-mutated gliomas. Diffusion-based phenotyping and monitoring microstructural integrity of extratumoral whole-brain NAWM may aid in estimating occult white matter involvement and should be considered as a complementary biomarker in glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...