Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemCatChem ; 14(16): e202200362, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36246043

RESUMO

Lipase/metal nanobiohybrids, generated by growth of silver or gold nanoparticles on protein matrixes are used as highly effective dual-activity heterogeneous catalysts for the production of enantiomerically enriched 2,5-dihydrofurans from allenic acetates in a one-pot cascade process combining a lipase-mediated hydrolytic kinetic resolution with a metal-catalyzed allene cycloisomerization. Incorporating a novel strategy based on enzyme-polymer bioconjugates in the nanobiohybrid preparation enables excellent conversions in the process. Candida antarctica lipase B (CALB) in combination with a dextran-based polymer modifier (DexAsp) proved to be most efficient when merged with silver nanoparticles. A range of hybrid materials were produced, combining Ag or Au metals with Thermomyces lanuginosus lipase (TLL) or CALB and its DexAsp or polyethyleneimine polymer bioconjugates. The wider applicability of the biohybrids is demonstrated by their use in allenic alcohol cyclizations, where a variety of dihydrofurans are obtained using a CALB/gold nanomaterial. These results underline the potential of the nanobiohybrid catalysis as promising approach to intricate one-pot synthetic strategies.

2.
Nanoscale ; 14(15): 5701-5715, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35343986

RESUMO

Novel hybrids containing silver or gold nanoparticles have been synthesized in aqueous media and at room temperature using enzymes or tailor-made enzyme-polymer conjugates, which directly induced the formation of inorganic silver or gold species. The choice of pH, protein, or bioconjugate strongly affected the final metallic nanoparticles hybrid formation. Using Candida antarctica lipase (CALB) in a solution, nanobiohybrids containing Ag2O nanoparticles of 9 nm average diameter were obtained. The use of tailor-made bioconjugates, for example, the CALB modified with dextran-aspartic acid polymer (Dext6kDa), resulted in a nanobiohybrid containing smaller Ag(0)/Ag2O nanoparticles. In the case of nanobiohybrids based on gold, Au(0) species were found in all cases. The Au-CALB hybrid contained spherical nanoparticles with 18 nm average diameter size, with a minor range of larger ones (>100 nm) while the AuNPs-CALB-Dext6kDa hybrid was formed by much smaller nanoparticles (9 nm, minor range of 22 nm), and also nanorods of 20-30/40-50 nm length. Using Thermomyces lanuginosus lipase (TLL), apart from the nanoparticle formation, nanoflowers with a diameter range of 100-200 nm were obtained. All nanobiohybrids maintained (dual) enzymatic and metallic activities. For instance, these nanobiohybrids exhibited exquisite dual-activity for hydrolysis/cycloisomerization cascades starting from allenic acetates. By merging the transition metal reactivity with the inherent lipase catalysis, allenic acetates directly converted to the corresponding O-heterocycles in enantiopure form catalysed by AgNPs-CALB-Dext6kDa, taking advantage of a kinetic resolution/cyclization pathway. These results showed the high applicability of these novel hybrids, offering new opportunities for the design of novel reaction cascades.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise , Lipase/metabolismo , Polímeros , Prata
3.
ChemistryOpen ; 11(1): e202100236, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981903

RESUMO

Vanadate-dependent chloroperoxidase from Curvularia inaequalis catalyzes 5-endo-trig bromocyclizations of α-allenols to produce valuable halofunctionalized furans as versatile synthetic building blocks. In contrast to other haloperoxidases, also the more challenging 5-exo-trig halocyclizations of γ-allenols succeed with this system even though the scope still remains more narrow. Benefitting from the vanadate chloroperoxidase's high resiliency towards oxidative conditions, cyclization-inducing reactive hypohalite species are generated in situ from bromide salts and hydrogen peroxide. Crucial requirements for high conversions are aqueous biphasic emulsions as reaction media, stabilized by either cationic or non-ionic surfactants.


Assuntos
Cloreto Peroxidase , Curvularia , Vanadatos
4.
Chemistry ; 25(26): 6474-6481, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30648769

RESUMO

Microbial methylotrophic organisms can serve as great inspiration in the development of biomimetic strategies for the dehydrogenative conversion of C1 molecules under ambient conditions. In this Concept article, a concise personal perspective on the recent advancements in the field of biomimetic catalytic models for methanol and formaldehyde conversion, in the presence and absence of enzymes and co-factors, towards the formation of hydrogen under ambient conditions is given. In particular, formaldehyde dehydrogenase mimics have been introduced in stand-alone C1 -interconversion networks. Recently, coupled systems with alcohol oxidase and dehydrogenase enzymes have been also developed for in situ formation and decomposition of formaldehyde and/or reduced/oxidized nicotinamide adenine dinucleotide (NADH/ NAD+ ). Although C1 molecules are already used in many industries for hydrogen production, these conceptual bioinspired low-temperature energy conversion processes may lead one day to more efficient energy storage systems enabling renewable and sustainable hydrogen generation for hydrogen fuel cells under ambient conditions using C1 molecules as fuels for mobile and miniaturized energy storage solutions in which harsh conditions like those in industrial plants are not applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...