Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Opin Cell Biol ; 86: 102309, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183892

RESUMO

The interactions between cells and their surrounding extracellular matrix (ECM) are dynamic and play critical roles in cell migration during development, health, and diseases. Recent advances have highlighted the complexity and diversity of ECM compositions, or "matrisomes", of tissues resulting in ECMs of different physical, mechanical, and biochemical properties. Investigating the effects of these properties on cell-ECM interactions in the context of cell migration have led to a better understanding of the principles underlying tissue morphogenesis, wound healing, immune response, or cancer metastasis. These new insights into the interplay between ECM dynamics and cell migration can lead to the identification of unique opportunities for therapeutic interventions.


Assuntos
Matriz Extracelular , Movimento Celular/fisiologia , Morfogênese
3.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555624

RESUMO

The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays crucial roles in all aspects of life - from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we have previously defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the 'matrisome' and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate '-omics' datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application and an R package. The web application can be used by anyone interested in annotating, classifying and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Movimento Celular
4.
Nat Cell Biol ; 25(8): 1089-1100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468756

RESUMO

The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.

5.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131773

RESUMO

The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays critical roles in all aspects of life: from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the "matrisome" and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate -omics datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application ( https://sites.google.com/uic.edu/matrisome/tools/matrisome-analyzer ) and an R package ( https://github.com/Matrisome/MatrisomeAnalyzeR ). The web application can be used by anyone interested in annotating, classifying, and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options. SUMMARY STATEMENT: Matrisome AnalyzeR is a suite of tools, including a web-based app and an R package, designed to facilitate the annotation and quantification of extracellular matrix components in big datasets.

6.
Hepatology ; 78(3): 741-757, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999534

RESUMO

BACKGROUND AND AIMS: HCC, the third leading cause of cancer-related death, arises in the context of liver fibrosis. Although HCC is generally poorly fibrogenic, some tumors harbor focal intratumor extracellular matrix (ECM) deposits called "fibrous nests." To date, the molecular composition and clinical relevance of these ECM deposits have not been fully defined. APPROACH AND RESULTS: We performed quantitative matrisome analysis by tandem mass tags mass spectrometry in 20 human cancer specific matrisome (HCCs) with high or low-grade intratumor fibrosis and matched nontumor tissues, as well as in 12 livers from mice treated with vehicle, carbon tetrachloride, or diethylnitrosamine. We found 94 ECM proteins differentially abundant between high and low-grade fibrous nests, including interstitial and basement membrane components, such as several collagens, glycoproteins, proteoglycans, enzymes involved in ECM stabilization and degradation, and growth factors. Pathway analysis revealed a metabolic switch in high-grade fibrosis, with enhanced glycolysis and decreased oxidative phosphorylation. Integrating the quantitative proteomics with transcriptomics from HCCs and nontumor livers (n = 2,285 samples), we identified a subgroup of fibrous nest HCCs, characterized by cancer-specific ECM remodeling, expression of the WNT/TGFB (S1) subclass signature, and poor patient outcome. Fibrous nest HCCs abundantly expressed an 11-fibrous-nest - protein signature, associated with poor patient outcome, by multivariate Cox analysis, and validated by multiplex immunohistochemistry. CONCLUSIONS: Matrisome analysis highlighted cancer-specific ECM deposits, typical of the WNT/TGFB HCC subclass, associated with poor patient outcomes. Hence, histologic reporting of intratumor fibrosis in HCC is of clinical relevance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fibrose , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
7.
Mol Cell Proteomics ; 22(4): 100528, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918099

RESUMO

The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely posttranslationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome," of tissues. This first part of this review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Lastly, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. Mass spectrometry-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.


Assuntos
Neoplasias , Proteômica , Humanos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo
9.
Nucleic Acids Res ; 51(D1): D1519-D1530, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399478

RESUMO

The extracellular matrix (ECM) is a complex assembly of proteins that constitutes the scaffold organizing cells, tissues, and organs. Over the past decade, mass-spectrometry-based proteomics has become the method of choice to profile the composition of the ECM, or the matrisome, of tissues. To assist non-specialists with the reuse of ECM proteomic datasets, we released MatrisomeDB (https://matrisomedb.org) in 2020. Here, we report the expansion of the database to include 25 new curated studies on the ECM of 24 new tissues in addition to datasets on tissues previously included, more than doubling the size of the original database and achieving near-complete coverage of the in-silico predicted matrisome. We further enhanced data visualization by maps of peptides and post-translational-modifications detected onto domain-based representations and 3D structures of ECM proteins. We also referenced external resources to facilitate the design of targeted mass spectrometry assays. Last, we implemented an abstract-mining tool that generates an enrichment word cloud from abstracts of studies in which a queried protein is found with higher confidence and higher abundance relative to other studies in MatrisomeDB.


Assuntos
Proteínas da Matriz Extracelular , Proteômica , Proteínas da Matriz Extracelular/metabolismo , Proteômica/métodos , Matriz Extracelular/química , Bases de Dados de Proteínas , Espectrometria de Massas
10.
J Invest Dermatol ; 143(2): 284-293, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36116512

RESUMO

Systemic sclerosis (SSc) is a clinically heterogeneous fibrotic disease with no effective treatment. Myofibroblasts are responsible for unresolving synchronous skin and internal organ fibrosis in SSc, but the drivers of sustained myofibroblast activation remain poorly understood. Using unbiased transcriptome analysis of skin biopsies, we identified the downregulation of SPAG17 in multiple independent cohorts of patients with SSc, and by orthogonal approaches, we observed a significant negative correlation between SPAG17 and fibrotic gene expression. Fibroblasts and endothelial cells explanted from SSc skin biopsies showed reduced chromatin accessibility at the SPAG17 locus. Remarkably, mice lacking Spag17 showed spontaneous skin fibrosis with increased dermal thickness, collagen deposition and stiffness, and altered collagen fiber alignment. Knockdown of SPAG17 in human and mouse fibroblasts and microvascular endothelial cells was accompanied by spontaneous myofibroblast transformation and markedly heightened sensitivity to profibrotic stimuli. These responses were accompanied by constitutive TGF-ß pathway activation. Thus, we discovered impaired expression of SPAG17 in SSc and identified, to our knowledge, a previously unreported cell-intrinsic role for SPAG17 in the negative regulation of fibrotic responses. These findings shed fresh light on the pathogenesis of SSc and may inform the search for innovative therapies for SSc and other fibrotic conditions through SPAG17 signaling.


Assuntos
Miofibroblastos , Escleroderma Sistêmico , Animais , Humanos , Camundongos , Células Cultivadas , Colágeno/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Proteínas dos Microtúbulos/metabolismo , Miofibroblastos/patologia , Escleroderma Sistêmico/patologia , Pele/patologia
11.
Cell Rep ; 40(12): 111358, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130489

RESUMO

Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-ß2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-ß2-mediated signaling axis.


Assuntos
Actinas , Fator de Crescimento Transformador beta2 , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos , Peixe-Zebra
12.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
13.
Matrix Biol ; 111: 95-107, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714875

RESUMO

The extracellular matrix (ECM) is a highly dynamic, well-organized acellular network of tissue-specific biomolecules, that can be divided into structural or core ECM proteins and ECM-associated proteins. The ECM serves as a blueprint for organ development and function and, when structurally altered through mutation, altered expression, or degradation, can lead to debilitating syndromes that often affect one tissue more than another. Cross-referencing the FANTOM5 SSTAR (Semantic catalog of Samples, Transcription initiation And Regulators) and the defined catalog of core matrisome ECM (glyco)proteins, we conducted a comprehensive analysis of 511 different human samples to annotate the context-specific transcription of the individual components of the defined matrisome. Relative log expression normalized SSTAR cap analysis gene expression peak data files were downloaded from the FANTOM5 online database and filtered to exclude all cell lines and diseased tissues. Promoter-level expression values were categorized further into eight core tissue systems and three major ECM categories: proteoglycans, glycoproteins, and collagens. Hierarchical clustering and correlation analyses were conducted to identify complex relationships in promoter-driven gene expression activity. Integration of the core matrisome and curated FANTOM5 SSTAR data creates a unique tool that provides insight into the promoter-level expression of ECM-encoding genes in a tissue- and cell-specific manner. Unbiased clustering of cap analysis gene expression peak data reveals unique ECM signatures within defined tissue systems. Correlation analysis among tissue systems exposes both positive and negative correlation of ECM promoters with varying levels of significance. This tool can be used to provide new insight into the relationships between ECM components and tissues and can inform future research on the ECM in human disease and development. We invite the matrix biology community to continue to explore and discuss this dataset as part of a larger and continuing conversation about the human ECM. An interactive web tool can be found at matrixpromoterome.github.io along with additional resources that can be found at dx.doi.org/10.6084/m9.figshare.19794481 (figures) and https://figshare.com/s/e18ecbc3ae5aaf919b78 (python notebook).


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fenótipo , Proteoglicanas/metabolismo
14.
Nat Cancer ; 3(1): 90-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121989

RESUMO

Cancer cells disseminate and seed in distant organs, where they can remain dormant for many years before forming clinically detectable metastases. Here we studied how disseminated tumor cells sense and remodel the extracellular matrix (ECM) to sustain dormancy. ECM proteomics revealed that dormant cancer cells assemble a type III collagen-enriched ECM niche. Tumor-derived type III collagen is required to sustain tumor dormancy, as its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling. Second-harmonic generation two-photon microscopy further revealed that the dormancy-to-reactivation transition is accompanied by changes in type III collagen architecture and abundance. Analysis of clinical samples revealed that type III collagen levels were increased in tumors from patients with lymph node-negative head and neck squamous cell carcinoma compared to patients who were positive for lymph node colonization. Our data support the idea that the manipulation of these mechanisms could serve as a barrier to metastasis through disseminated tumor cell dormancy induction.


Assuntos
Colágeno Tipo III , Neoplasias de Cabeça e Pescoço , Proliferação de Células , Matriz Extracelular , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34994383

RESUMO

The extracellular matrix (ECM) is a complex assembly of macromolecules that provides both architectural support and molecular signals to cells and modulate their behaviors. Originally considered a passive mechanical structure, decades of research have since demonstrated how the ECM dynamically regulates a diverse set of cellular processes in development, homeostasis, and disease progression. In September 2021, the American Society for Matrix Biology (ASMB) organized a hybrid scientific meeting, integrating in-person and virtual formats, to discuss the latest developments in ECM research. Here, we highlight exciting scientific advances that emerged from the meeting including (1) the use of model systems for fundamental and translation ECM research, (2) ECM-targeting approaches as therapeutic modalities, (3) cell-ECM interactions, and (4) the ECM as a critical component of tissue engineering strategies. In addition, we discuss how the ASMB incorporated mentoring, career development, and diversity, equity, and inclusion initiatives in both virtual and in-person events. Finally, we reflect on the hybrid scientific conference format and how it will help the ASMB accomplish its mission moving forward.


Assuntos
Matriz Extracelular , Modelos Biológicos , Humanos
16.
J Histochem Cytochem ; 70(2): 151-168, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34866441

RESUMO

Recent evidence supports the fimbriae of the fallopian tube as one origin site for high-grade serous ovarian cancer (HGSOC). The progression of many solid tumors is accompanied by changes in the microenvironment, including alterations of the extracellular matrix (ECM). Therefore, we sought to determine the ECM composition of the benign fallopian tube and changes associated with serous tubal intraepithelial carcinomas (STICs), precursors of HGSOC. The ECM composition of benign human fallopian tube was first defined from a meta-analysis of published proteomic datasets that identified 190 ECM proteins. We then conducted de novo proteomics using ECM enrichment and identified 88 proteins, 7 of which were not identified in prior studies (COL2A1, COL4A5, COL16A1, elastin, LAMA5, annexin A2, and PAI1). To enable future in vitro studies, we investigated the levels and localization of ECM components included in tissue-engineered models (type I, III, and IV collagens, fibronectin, laminin, versican, perlecan, and hyaluronic acid) using multispectral immunohistochemical staining of fimbriae from patients with benign conditions or STICs. Quantification revealed an increase in stromal fibronectin and a decrease in epithelial versican in STICs. Our results provide an in-depth picture of the ECM in the benign fallopian tube and identified ECM changes that accompany STIC formation. (J Histochem Cytochem XX: XXX-XXX, XXXX).


Assuntos
Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/patologia , Matriz Extracelular/patologia , Tubas Uterinas/patologia , Neoplasias Ovarianas/patologia , Feminino , Fibronectinas/análise , Humanos , Metanálise como Assunto , Proteômica , Versicanas/análise
17.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802493

RESUMO

BACKGROUND: To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome. METHODS: This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM. RESULTS: PTM-disruptive mutations (PTMmut) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors. Also, matrisome PTMmut are often found among structural and functional protein regions and in proteins involved in homo- and heterotypic interactions, suggesting potential disruption of matrisome functions. CONCLUSIONS: Though quantitatively minoritarian in the spectrum of matrisome mutations, PTMmut show distinctive features and damaging potential which might concur to deregulated structural, functional, and signaling networks in the tumor microenvironment.

18.
Tissue Eng Part C Methods ; 27(5): 307-321, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813860

RESUMO

Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.


Assuntos
Hidrogéis , Proteômica , Animais , Córnea , Matriz Extracelular , Suínos , Engenharia Tecidual
19.
Biochem J ; 478(7): 1413-1434, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724335

RESUMO

The extracellular matrix (ECM) is a complex meshwork of proteins and an essential component of multicellular life. We have recently reported the characterization of a novel ECM protein, SNED1, and showed that it promotes breast cancer metastasis and regulates craniofacial development. However, the mechanisms by which it does so remain unknown. ECM proteins exert their functions by binding to cell surface receptors and interacting with other ECM proteins, actions that we can predict using knowledge of protein's sequence, structure, and post-translational modifications. Here, we combined in-silico and in-vitro approaches to characterize the physico-chemical properties of SNED1 and infer its putative functions. To do so, we established a mammalian cell system to produce and purify SNED1 and its N-terminal fragment, which contains a NIDO domain, and demonstrated experimentally SNED1's potential to be glycosylated, phosphorylated, and incorporated into an insoluble ECM. We also determined the secondary and tertiary structures of SNED1 and its N-terminal fragment and obtained a model for its NIDO domain. Using computational predictions, we identified 114 proteins as putative SNED1 interactors, including the ECM protein fibronectin. Pathway analysis of the predicted SNED1 interactome further revealed that it may contribute to signaling through cell surface receptors, such as integrins, and participate in the regulation of ECM organization and developmental processes. Last, using fluorescence microscopy, we showed that SNED1 forms microfibrils within the ECM and partially colocalizes with fibronectin. Altogether, we provide a wealth of information on an understudied yet important ECM protein with the potential to decipher its pathophysiological functions.


Assuntos
Biologia Computacional/métodos , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Proteínas da Matriz Extracelular/genética , Fibronectinas/genética , Humanos , Integrinas/genética , Camundongos , Camundongos Knockout , Homologia de Sequência , Transdução de Sinais
20.
J Cereb Blood Flow Metab ; 41(9): 2423-2438, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33730931

RESUMO

The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.


Assuntos
Transtornos Cerebrovasculares/fisiopatologia , Matriz Extracelular/fisiologia , Proteômica/métodos , Adulto , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...