Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 279, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996468

RESUMO

The carrier-envelope phase (CEP) of an ultrashort laser pulse is becoming more crucial to specify the temporal characteristic of the pulse's electric field when the pulse duration becomes shorter and attains the subcycle regime; here, the pulse duration of the intensity envelope is shorter than one cycle period of the carrier field oscillation. When this subcycle pulse involves a structured wavefront as is contained in an optical vortex (OV) pulse, the CEP has an impact on not only the temporal but also the spatial characteristics owing to the spatiotemporal coupling in the structured optical pulse. However, the direct observation of the spatial effect of the CEP control has not yet been demonstrated. In this study, we report on the measurement and control of the spatial wavefront of a subcycle OV pulse by adjusting the CEP. To generate subcycle OV pulses, an optical parametric amplifier delivering subcycle Gaussian pulses and a Sagnac interferometer as a mode converter were integrated and provided an adequate spectral adaptability. The pulse duration of the generated OV pulse was 4.7 fs at a carrier wavelength of 1.54 µm. To confirm the wavefront control with the alteration of the CEP, we developed a novel [Formula: see text]-2[Formula: see text] interferometer that exhibited spiral fringes originating from the spatial interference between the subcycle OV pulse and the second harmonic of the subcycle Gaussian pulse producing a parabolic wavefront as a reference; this resulted in the successful observation of the rotation of spiral interference fringes during CEP manipulation.

2.
Opt Express ; 30(7): 10818-10832, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473040

RESUMO

We demonstrate the scanning and control of the carrier-envelope phases (CEPs) of two adjacent spectral components totally spanning more than one-octave in the short-wave infrared (SWIR) wavelength region by operating two individual acousto-optic programmable dispersive filters (AOPDFs) applied to each of the two spectral components. The total CEP shift of the synthesized sub-cycle pulse composed of the two spectral components is controlled with simultaneous scans of the two CEPs. The resultant error of the controlled CEP was 642 mrad, so that this technique is useful for searching zero CEP of the synthesized pulse with the maximum field amplitude. In addition, we conduct a closed feedback loop to compensate for the CEP fluctuation by using the two AOPDFs together. As a result, we succeed to reduce the rms error of the CEP from 399 mrad to 237 mrad.

3.
Light Sci Appl ; 9: 168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042531

RESUMO

High-order harmonic generation (HHG) is currently utilized for developing compact table-top radiation sources to provide highly coherent extreme ultraviolet (XUV) and soft X-ray pulses; however, the low repetition rate of fundamental lasers, which is typically in the multi-kHz range, restricts the area of application for such HHG-based radiation sources. Here, we demonstrate a novel method for realizing a MHz-repetition-rate coherent XUV light source by utilizing intracavity HHG in a mode-locked oscillator with an Yb:YAG thin disk laser medium and a 100-m-long ring cavity. We have successfully implemented HHG by introducing two different rare gases into two separate foci and picking up each HH beam. Owing to the two different HH beams generated from one cavity, this XUV light source will open a new route to performing a time-resolved measurement with an XUV-pump and XUV-probe scheme at a MHz-repetition rate with a femtosecond resolution.

4.
Nat Commun ; 11(1): 3413, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641703

RESUMO

Few-cycle short-wave infrared (SWIR) pulses are useful tools for research on strong-field physics and nonlinear optics. Here we demonstrate the amplification of sub-cycle pulses in the SWIR region by using a cascaded BBO-based optical parametric amplifier (OPA) chain. By virtue of the tailored wavelength of the pump pulse of 708 nm, we successfully obtained a gain bandwidth of more than one octave for a BBO crystal. The division and synthesis of the spectral components of the pulse in a Mach-Zehnder-type interferometer set in front of the final amplifier enabled us to control the dispersion of each spectral component using an acousto-optic programmable dispersive filter inserted in each arm of the interferometer. As a result, we successfully generated 0.73-optical-cycle pulses at 1.8 µm with a pulse energy of 32 µJ.

5.
Nat Commun ; 7: 12835, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27647423

RESUMO

The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ∼4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.

6.
Opt Express ; 24(13): 14857-70, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410638

RESUMO

We experimentally generate third-harmonic (TH) vortex beams in air by the filamentation of femtosecond pulses produced in a lab-built Ti:sapphire chirped pulse amplifier. The generated TH beam profile is shown to evolve with increasing pump energy. At a sufficiently high pump energy, we observe a conical TH emission of the fundamental vortex and confirm that the conical radiation follows the conservation law for orbital angular momentum. We further investigate the far-field angularly resolved spectra of the TH wave to analyze the conical emission angle. We theoretically verify that the formation of the conical TH vortex results from the phase-matching between the fundamental and TH waves during the filamentation process.

7.
Sci Adv ; 1(8): e1500356, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601262

RESUMO

Capturing electron motion in a molecule is the basis of understanding or steering chemical reactions. Nonlinear Fourier transform spectroscopy using an attosecond-pump/attosecond-probe technique is used to observe an attosecond electron wave packet in a nitrogen molecule in real time. The 500-as electronic motion between two bound electronic states in a nitrogen molecule is captured by measuring the fragment ions with the same kinetic energy generated in sequential two-photon dissociative ionization processes. The temporal evolution of electronic coherence originating from various electronic states is visualized via the fragment ions appearing after irradiation of the probe pulse. This observation of an attosecond molecular electron wave packet is a critical step in understanding coupled nuclear and electron motion in polyatomic and biological molecules to explore attochemistry.

8.
Nat Commun ; 6: 8197, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324319

RESUMO

The vibrational wavepacket of a diatomic molecular ion at the time of ionization is usually considered to be generated on the basis of the Franck-Condon principle. According to this principle, the amplitude of each vibrational wavefunction in the wavepacket is given by the overlap integral between each vibrational wavefunction and the ground vibrational wavefunction in the neutral molecule, and hence, the amplitude should be a real number, or equivalently, a complex number the phase of which is equal to zero. Here we report the observation of a non-trivial phase modulation of the amplitudes of vibrational wavefunctions in a wavepacket generated in the ground electronic state of a H2⁺ molecular ion at the time of ionization. The phase modulation results in a group delay of the specific vibrational states of order 1 fs, which can be regarded as the settling time required to compose the initial vibrational wavepacket.

9.
Sci Rep ; 5: 11366, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068640

RESUMO

We propose a novel method to determine the complex amplitude of each eigenfunction composing a vibrational wavepacket of / molecular ions evolving with a ~10 fs time scale. We find that the two-dimensional spectrogram of the kinetic energy release (KER) of H(+)/D(+) fragments plotted against the time delay of the probe pulse is equivalent to the spectrogram used in the frequency-resolved optical gating (FROG) technique to retrieve the complex amplitude of an ultrashort optical pulse. By adapting the FROG algorithm to the delay-KER spectrogram of the vibrational wavepacket, we have successfully reconstructed the complex amplitude. The deterioration in retrieval accuracy caused by the bandpass filter required to process actual experimental data is also discussed.

10.
Nat Commun ; 4: 2691, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24158092

RESUMO

High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field synthesis and an energy-scaling method of high-order harmonic generation, the maximum pulse energy of the isolated attosecond pulse reaches as high as 1.3 µJ. The generated pulse with a duration of 500 as, as characterized by a nonlinear autocorrelation measurement, is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena. The peak power of our tabletop light source reaches 2.6 GW, which even surpasses that of an extreme-ultraviolet free-electron laser.

11.
Opt Lett ; 37(14): 2922-4, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825179

RESUMO

We demonstrate the generation and real-time observation of the vibrational wave packet of D(2)(+) by using a sub-10-fs extreme UV high-harmonic pump pulse and a three-color probe laser pulse whose wavelength ranges from near-IR to vacuum UV. This multicolor pump-probe scheme can provide us with a powerful experimental tool for investigating a variety of wave packets evolving with a time scale of ~20 fs.

12.
Opt Express ; 18(24): 24619-31, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164808

RESUMO

We report periodical frequency modulation of high-order harmonic fields observed by changing the delay between the driving two-color laser fields consisting of the fundamental and its second harmonic (SH) field. The amplitude of modulation has been up to ∼0.4 eV, which is larger than the bandwidth of the fundamental field. Experimental results show that the intensity and chirp of the fundamental field can control this phenomenon. Numerical analysis by solving the time-dependent Schrödinger equation approves of these results and shows that anharmonic frequency components of the SH field have a crucial role in this phenomenon.

13.
Phys Rev Lett ; 104(23): 233901, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867240

RESUMO

We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

14.
Phys Rev Lett ; 102(21): 213904, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519109

RESUMO

The temporal coherence of an attosecond optical field in the extreme ultraviolet wavelength region can be defined in terms of the extent of interference in time domain. We successfully measured this phenomenon both with and without spectral decomposition. We also report the results of using this approach to directly observe both symmetry and symmetry breaking of interference fringes in an attosecond pulse train.

15.
J Chem Phys ; 129(16): 161103, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19045240

RESUMO

The interferometric autocorrelation functions of attosecond pulse trains in the time domain were measured by detecting CO(2) (2+) as well as the atomic and molecular fragment ions generated via two-photon absorption of intense vacuum ultraviolet-extreme ultraviolet light by CO(2). It was demonstrated that the Fourier transformation of the interferometric autocorrelation functions of the respective fragment ions appearing in a time-of-flight mass spectrum exhibit spectroscopic information in the frequency domain corresponding to the two-photon photofragment excitation spectra of CO(2) and the double ionization excitation spectrum to form CO(2) (2+).

16.
Phys Rev Lett ; 101(25): 253901, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113708

RESUMO

We demonstrate the generation of a coherent water window x ray by extending the plateau region of high-order harmonics under a neutral-medium condition. The maximum harmonic photon energies attained are 300 and 450 eV in Ne and He, respectively. Our proposed generation scheme, combining a 1.6 microm laser driver and a neutral Ne gas medium, is efficient and scalable in output yields of the water window x ray. Thus, the precept of the design parameter for a single-shot live-cell imaging by contact microscopy is presented.

17.
Opt Express ; 16(17): 13431-8, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711582

RESUMO

We have developed a chirped pulse amplification system of Ti:sapphire laser generating a 9.9 fs pulse with a pulse energy of 11 mJ at a repetition rate of 10 Hz. Spectral narrowing during amplification is successfully compensated by using specially designed partial mirrors and broadband high-damage-threshold mirrors. This is the first demonstration, to the best of our knowledge, of the direct amplification of terawatt sub-10-fs pulses in a chirped pulse amplification system of Ti:sapphire laser.


Assuntos
Amplificadores Eletrônicos , Desenho Assistido por Computador , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Óxido de Alumínio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Titânio/química
18.
Phys Rev Lett ; 99(5): 053904, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17930755

RESUMO

We present a dramatic enhancement [Phys. Rev. Lett. 91, 043002 (2003)] of high-order harmonic generation by simultaneous irradiation of booster harmonics. A key feature of our experiment is the use of mixed gases (Xe and He) with different ionization energies. The harmonics from Xe atoms act as a booster to increase the harmonic yield from He by a factor of 4 x 10(3). The dominance of the dramatic enhancement effect is supported by simulation with the time-dependent Schrödinger equation as well as the observed spatial characteristic of the generated harmonics and dependence on medium conditions.

19.
Phys Rev Lett ; 98(15): 153904, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17501352

RESUMO

We report on the first experimental evidence of the destructive and constructive interference of high harmonics generated in a mixed gas of He and Ne, which facilitates the coherent control of high harmonic generation. Theoretically, we develop an analytical model of high harmonic generation in mixed gases and succeed in reproducing the experimental results and deriving the optimization conditions for the process. The observed interference modulation is attributed to the difference between the phases of the intrinsically chirped harmonic pulses from He and Ne, which leads to a novel method for broadband measurement of the harmonic phases and for observing the underlying attosecond electron dynamics.

20.
Opt Lett ; 32(6): 722-4, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308614

RESUMO

The interference pattern produced by a single 13 nm high-order harmonic pulse is captured by an extreme-ultraviolet CCD camera. A beam divergence of 0.35 mrad and a high fringe visibility of 0.96 are obtained with an optimal phase-matching condition for the 13 nm harmonics. The spatial coherence length of the 13 nm harmonics selected by Mo/Si multilayer mirrors is larger than the beam diameter. This result shows that the 13 nm harmonic beam is useful for applications in interferometry, time-resolved studies of ultrafast dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...