Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genet Syst ; 94(4): 167-176, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31474624

RESUMO

Self-incompatibility (SI) is a sophisticated system for pollen selectivity to prevent pollination by genetically identical pollen. In Brassica, it is genetically controlled by a single, highly polymorphic S-locus, and the male and female S-determinant factors have been identified as S-locus protein 11 (SP11)/S-locus cysteine-rich protein (SCR) and S-locus receptor kinase (SRK), respectively. However, the overall molecular system and identity of factors in the downstream cascade of the SI reaction remain unclear. Previously, we identified a self-compatible B. rapa mutant line, TSC28, which has a disruption in an unidentified novel factor of the SI signaling cascade. Here, in a genetic analysis of TSC28, using an F2 population from a cross with the reference B. rapa SI line Chiifu-401, the causal gene was mapped to a genetic region of DNA containing markers BrSA64 and ACMP297 in B. rapa chromosome A1. By fine mapping using an F2 population of 1,034 plants, it was narrowed down to a genetic region between DNA markers ACMP297 and BrgMS4028, with physical length approximately 1.01 Mbp. In this genomic region, 113 genes are known to be located and, among these, we identified 55 genes that were expressed in the papilla cells. These are candidates for the gene responsible for the disruption of SI in TSC28. This list of candidate genes will contribute to the discovery of a novel downstream factor in the SP11-SRK signaling cascade in the Brassica SI system.


Assuntos
Brassica rapa/genética , Glicoproteínas/genética , Proteínas de Plantas/genética , Pólen/genética , Polinização/genética , Sequência de Aminoácidos/genética , Brassica rapa/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Haplótipos/genética , Proteínas Mutantes/genética , Especificidade de Órgãos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de RNA
2.
Genes Genet Syst ; 93(5): 209-220, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30473573

RESUMO

Stigmatic papillae develop at the apex of the gynoecium and play an important role as a site of pollination. The papillae in Brassicaceae are of the dry and unicellular type, and more than 15,000 genes are expressed in the papillae; however, the molecular and physiological mechanisms of their development remain unknown. We found that the papillae in Arabidopsis thaliana change their length in response to altered ambient humidity: papillae of flowers incubated under high humidity elongated more than those under normal humidity conditions. Genetic analysis and transcriptome data suggest that an abscisic acid-mediated abiotic stress response mechanism regulates papilla length. Our data suggest a flexible regulation of papilla elongation at the post-anthesis stage, in response to abiotic stress, as an adaptation to environmental conditions.


Assuntos
Flores/metabolismo , Polinização/genética , Polinização/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Umidade , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transcriptoma/genética
3.
Genes Genet Syst ; 91(2): 97-109, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27021915

RESUMO

Plants subjected to abiotic stress can regulate gene expression post-transcriptionally by means of small RNAs such as microRNAs. Cool-temperature stress causes abnormal tapetum hypertrophy in rice anthers, leading to pollen sterility. As a first step toward understanding the molecular mechanisms of cool tolerance in developing anthers of rice, we report here a comprehensive comparative analysis of microRNAs between cool-sensitive Sasanishiki and cool-tolerant Hitomebore cultivars. High-throughput Illumina sequencing revealed 241 known and 46 novel microRNAs. Interestingly, 15 of these microRNAs accumulated differentially in the two cultivars at the uninucleate microspore stage under cool conditions. Inverse correlations between expression patterns of microRNAs and their target genes were confirmed by quantitative RT-PCR analysis, and cleavage sites of some of the target genes were determined by 5' RNA ligase-mediated RACE experiments. Thus, our data are useful resources to elucidate microRNA-mediated mechanism(s) of cool tolerance in rice anthers at the booting stage.


Assuntos
Flores/genética , MicroRNAs/genética , Oryza/genética , Estresse Fisiológico/genética , Temperatura Baixa , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/biossíntese , Oryza/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento
4.
Plant Biotechnol (Tokyo) ; 33(5): 351-359, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31274996

RESUMO

Isoamylase (ISA) is a starch debranching enzyme that removes α-1,6-glucosidic linkages in α-polyglucans such as amylopectin. From previous studies, plant isoamylases have been shown to play a crucial role in amylopectin biosynthesis; however, little is known about their function in storage root tissues of plants such as cassava, yam and sweet potato. In this study, we isolated cDNA clones and characterized the cDNA nucleotide sequences of three genes (IbISA1, IbISA2, IbISA3) encoding isoamylase from sweet potato (Ipomoea batatas (L.) cv. White Star). Deduced amino acid sequences of the three isolated IbISAs have the specific regions that are highly conserved among the α-amylase family members. The product of IbISA2 is predicted to be enzymatically inactive, like other plant ISA2s, due to replacement of amino acid residues that are important for hydrolytic reaction. qRT-PCR analysis demonstrated that expression of IbISA2 was higher than that of the other two IbISAs (IbISA1 and IbISA3) in tuberous root at 109 days after planting, at which stage of tuberous root was at which stage tuberous roots were almost fully developed almost developed. This expression pattern observed in our experiments was different from that in other sink organs, such as seeds (endosperms), indicating that orchestration of ISA gene expression may depend on the differences in sink organ type between tuberous roots and seeds. The molecular characterization of three IbISA genes and their expression analysis in this study will contribute to further studies on starch biosynthesis in sweet potato, especially in storage root.

5.
Plant Cell Physiol ; 56(4): 663-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527828

RESUMO

Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Flores/citologia , Flores/genética , Polinização/genética , Transcrição Gênica , Arabidopsis/fisiologia , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...