Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(27): 29739-29750, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005812

RESUMO

Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition. The difference in the microparticle structure was associated with changes in their surface topography and ζ-potential. These microparticles were incubated with human serum or plasma at 37°C for 24 h. The adsorbed proteins were eluted and analyzed by means of SDS-PAGE. The protein composition of the eluates was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS); a total of 357 proteins were identified, and 183 of them were detected in all samples. Our results demonstrate that the relative abundance of proteins of different functional groups (immunoglobulins, complement proteins, and apolipoproteins) varied depending on the structure and surface characteristics of the polyelectrolyte microparticles and the incubation medium. Our findings expand the understanding of the influence of the physicochemical properties of the microparticles on their interaction with proteins, which can help to improve the design of microparticles for drug delivery.

2.
Pharmaceutics ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931906

RESUMO

Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro. DOX-containing calcium carbonate microparticles with or without a protective polyelectrolyte shell and polyelectrolyte microcapsules of about 2.4-2.5 µm in size were obtained through coprecipitation and spontaneous loading. All the microstructures exhibited a prolonged release of DOX. An estimation of the cytotoxicity of the DOX-containing microstructures showed that the encapsulation of DOX decreased its toxicity to macrophages and delayed the cytotoxic effect against tumor cells. The DOX-containing calcium carbonate microparticles with a protective polyelectrolyte shell were more toxic to the cancer cells than DOX-containing polyelectrolyte microcapsules, whereas, for the macrophages, the microcapsules were most toxic. It is concluded that DOX-containing core/shell microparticles with an eight-layer polyelectrolyte shell are optimal drug microcarriers due to their low toxicity to immune cells, even upon prolonged incubation, and strong delayed cytotoxicity against tumor cells.

3.
Pharmaceutics ; 16(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794315

RESUMO

Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.

4.
Biosensors (Basel) ; 14(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38248420

RESUMO

Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides. The RAD51 protein plays a central role in DNA repair via the homologous recombination pathway. This recombinase is essential for the genome stability and its overexpression is often correlated with aggressive cancer. RAD51 is therefore a potential target in the therapeutic strategy for cancer. Here, we report the designing of a PC-based array sensor for real-time monitoring of oligonucleotide-RAD51 recruitment by means of surface mode imaging and validation of the concept of this approach. Our data demonstrate that the designed biosensor ensures the highly sensitive multiplexed analysis of association-dissociation events and detection of the biomarker of DNA damage using a microfluidic PC array. The obtained results highlight the potential of the developed technique for testing the functionality of candidate drugs, discovering new molecular targets and drug entities. This paves the way to further adaption and bioanalytical use of the biosensor for high-content screening to identify new DNA repair inhibitor drugs targeting the RAD51 nucleoprotein filament or to discover new molecular targets.


Assuntos
Anticorpos , Neoplasias , Humanos , Diagnóstico por Imagem , Biomarcadores Tumorais , Reparo do DNA , DNA de Cadeia Simples , Oligonucleotídeos , Rad51 Recombinase
5.
Artigo em Inglês | MEDLINE | ID: mdl-37917654

RESUMO

Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 µm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.

6.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299650

RESUMO

Fluorescent hydrogels are promising candidate materials for portable biosensors to be used in point-of-care diagnosis because (1) they have a greater capacity for binding organic molecules than immunochromatographic test systems, determined by the immobilization of affinity labels within the three-dimensional hydrogel structure; (2) fluorescent detection is more sensitive than the colorimetric detection of gold nanoparticles or stained latex microparticles; (3) the properties of the gel matrix can be finely tuned for better compatibility and detection of different analytes; and (4) hydrogel biosensors can be made to be reusable and suitable for studying dynamic processes in real time. Water-soluble fluorescent nanocrystals are widely used for in vitro and in vivo biological imaging due to their unique optical properties, and hydrogels based on these allow the preservation of these properties in bulk composite macrostructures. Here we review the techniques for obtaining analyte-sensitive fluorescent hydrogels based on nanocrystals, the main methods used for detecting the fluorescent signal changes, and the approaches to the formation of inorganic fluorescent hydrogels via sol-gel phase transition using surface ligands of the nanocrystals.

7.
Pharmaceutics ; 15(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986807

RESUMO

Multiplexed fluorescent immunohistochemical analysis of breast cancer (BC) markers and high-resolution 3D immunofluorescence imaging of the tumor and its microenvironment not only facilitate making the disease prognosis and selecting effective anticancer therapy (including photodynamic therapy), but also provides information on signaling and metabolic mechanisms of carcinogenesis and helps in the search for new therapeutic targets and drugs. The characteristics of imaging nanoprobe efficiency, such as sensitivity, target affinity, depth of tissue penetration, and photostability, are determined by the properties of their components, fluorophores and capture molecules, and by the method of their conjugation. Regarding individual nanoprobe components, fluorescent nanocrystals (NCs) are widely used for optical imaging in vitro and in vivo, and single-domain antibodies (sdAbs) are well established as highly specific capture molecules in diagnostic and therapeutic applications. Moreover, the technologies of obtaining functionally active sdAb-NC conjugates with the highest possible avidity, with all sdAb molecules bound to the NC in a strictly oriented manner, provide 3D-imaging nanoprobes with strong comparative advantages. This review is aimed at highlighting the importance of an integrated approach to BC diagnosis, including the detection of biomarkers of the tumor and its microenvironment, as well as the need for their quantitative profiling and imaging of their mutual location, using advanced approaches to 3D detection in thick tissue sections. The existing approaches to 3D imaging of tumors and their microenvironment using fluorescent NCs are described, and the main comparative advantages and disadvantages of nontoxic fluorescent sdAb-NC conjugates as nanoprobes for multiplexed detection and 3D imaging of BC markers are discussed.

8.
Int J Mol Sci ; 24(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901779

RESUMO

High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Anticorpos , Proteínas , Técnicas Analíticas Microfluídicas/métodos
9.
J Phys Chem C Nanomater Interfaces ; 126(48): 20480-20490, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36523488

RESUMO

Discerning the kinetics of photoluminescence (PL) decay of packed quantum dots (QDs) and QD-based hybrid materials is of crucial importance for achieving their promising potential. However, the interpretation of the decay kinetics of QD-based systems, which usually are not single-exponential, remains challenging. Here, we present a method for analyzing photoluminescence (PL) decay curves of fluorophores by studying their statistical moments. A certain combination of such moments, named as the n-th order moments' ratio, R n , is studied for several theoretical decay curves and experimental PL kinetics of CdSe quantum dots (QDs) acquired by time-correlated single photon counting (TCSPC). For the latter, three different case studies using the R n ratio analysis are presented, namely, (i) the effect of the inorganic shell composition and thickness of the core-shell QDs, (ii) QD systems with Förster resonance energy transfer (FRET) decay channels, and (iii) system of QDs near a layer of plasmonic nanoparticles. The proposed method is shown to be efficient for the detection of slight changes in the PL kinetics, being time-efficient and requiring low computing power for performing the analysis. It can also be a powerful tool to identify the most appropriate physically meaningful theoretical decay function, which best describes the systems under study.

10.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014600

RESUMO

Semiconductor nanocrystals known as quantum dots (QDs) are of great interest for researchers and have potential use in various applications in biomedicine, such as in vitro diagnostics, molecular tracking, in vivo imaging, and drug delivery. Systematic analysis of potential hazardous effects of QDs is necessary to ensure their safe use. In this study, we obtained water-soluble core/shell QDs differing in size, surface charge, and chemical composition of the core. All the synthesized QDs were modified with polyethylene glycol derivatives to obtain outer organic shells protecting them from degradation. The physical and chemical parameters were fully characterized. In vitro cytotoxicity of the QDs was estimated in both normal and tumor cell lines. We demonstrated that QDs with the smallest size had the highest in vitro cytotoxicity. The most toxic QDs were characterized by a low negative surface charge, while positively charged QDs were less cytotoxic, and QDs with a greater negative charge were the least toxic. In contrast, the chemical composition of the QD core did not noticeably affect the cytotoxicity in vitro. This study provides a better understanding of the influence of the QD parameters on their cytotoxicity and can be used to improve the design of QDs.

11.
Biomater Sci ; 10(18): 5092-5115, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35894444

RESUMO

The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Cápsulas/química , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Polímeros/química , Relação Estrutura-Atividade
12.
Biosensors (Basel) ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624601

RESUMO

Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.


Assuntos
COVID-19 , Análise Espectral Raman , Antígenos Virais , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Prata/química , Análise Espectral Raman/métodos , Glicoproteína da Espícula de Coronavírus
13.
Polymers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34883579

RESUMO

Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface charge, size, rigidity, and functional properties. Here, we report on the engineering and validation of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PEGylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcapsules with controlled photoluminescence properties, and pave the way for the further development of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.

14.
Nanoscale ; 13(48): 20354-20373, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874394

RESUMO

The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835819

RESUMO

The engineering of delivery systems for drugs and contrasting labels ensuring the simultaneous imaging and treatment of malignant tumors is an important hurdle in developing new tools for cancer therapy and diagnosis. Polyelectrolyte microcapsules (MCs), formed by nanosized interpolymer complexes, represent a promising platform for the designing of multipurpose agents, functionalized with various components, including high- and low-molecular-weight substances, metal nanoparticles, and organic fluorescent dyes. Here, we have developed size-homogenous MCs with different structures (core/shell and shell types) and microbeads containing doxorubicin (DOX) as a model anticancer drug, and fluorescent semiconductor nanocrystals (quantum dots, QDs) as fluorescent nanolabels. In this study, we suggest approaches to the encapsulation of DOX at different stages of the MC synthesis and describe the optimal conditions for the optical encoding of MCs with water-soluble QDs. The results of primary characterization of the designed microcarriers, including particle analysis, the efficacy of DOX and QDs encapsulation, and the drug release kinetics are reported. The polyelectrolyte MCs developed here ensure a modified (prolonged) release of DOX, under conditions close to normal and tumor tissues; they possess a bright fluorescence that paves the way to their exploitation for the delivery of antitumor drugs and fluorescence imaging.

16.
Nanoscale ; 13(47): 19929-19935, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34812464

RESUMO

Semiconductor quantum dots (QDs) are known for their high two-photon absorption (TPA) capacity. This allows them to efficiently absorb infrared photons with energies lower than the bandgap energy. Moreover, TPA in QDs can be further enhanced by the interaction of excitons of the QDs with plasmons of a metal nanoparticle. We fabricated nonlinear plasmon-exciton photodetectors based on QDs and silver nanoplates (SNPs) to demonstrate the optoelectronic application of these effects. A thin layer of CdSe QDs was used as a source of charge carriers for a photoresistor-type photodetector. SNPs with near-infrared plasmon modes were introduced into the layer of QDs to increase the light absorption efficiency. Under near-infrared irradiation, the power of the dependence of the photocurrent on the excitation intensity was twice the power of the corresponding dependence under one-photon excitation with visible light. This proved that the new photodetector efficiently operated under two-photon excitation. Although the SNP light absorption was linear, energy was transferred from plasmons to excitons in the two-quantum mode, which led to a nonlinear dependence. Moreover, we found that the photocurrent from the designed photodetector containing the QD-SNP composite was an order of magnitude higher than that from a photodetector containing QDs alone. This can be explained by the plasmon-induced increase in the TPA efficiency.

17.
Chem Sci ; 12(38): 12794-12805, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703566

RESUMO

Resonant interaction between excitonic transitions of molecules and localized electromagnetic field allows the formation of hybrid light-matter polaritonic states. This hybridization of the light and the matter states has been shown to significantly alter the intrinsic properties of molecular ensembles placed inside the optical cavity. Here, we have observed strong coupling of excitonic transition in a pair of closely located organic dye molecules demonstrating an efficient donor-to-acceptor resonance energy transfer with the mode of a tuneable open-access cavity. Analysing the dependence of the relaxation pathways between energy states in this system on the cavity detuning, we have demonstrated that predominant strong coupling of the cavity photon to the exciton transition in the donor dye molecule can lead not only to an increase in the donor-acceptor energy transfer, but also to an energy shift large enough to cause inversion between the energy states of the acceptor and the mainly donor lower polariton energy state. Furthermore, we have shown that the polariton-assisted donor-acceptor chromophores' role reversal or "carnival effect" not only changes the relative energy levels of the donor-acceptor pair, but also makes it possible to manipulate the energy flow in the systems with resonant dipole-dipole interaction and direct energy transfer from the acceptor to the mainly donor lower polariton state. Our experimental data are the first confirmation of the theoretically predicted possibility of polariton-assisted energy transfer reversal in FRET systems, thus paving the way to new avenues in FRET-imaging, remote-controlled chemistry, and all-optical switching.

18.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578478

RESUMO

Designing nanoprobes in which quantum dots (QDs) are used as photoluminescent labels is an especially promising line of research due to their possible medical applications ranging from disease diagnosis to drug delivery. In spite of the significant progress made in designing such nanoprobes, the properties of their individual components, i.e., photoluminescent QDs, vectorization moieties, and pharmacological agents, still require further optimization to enhance the efficiency of diagnostic or therapeutic procedures. Here, we have developed a method of engineering compact multifunctional nanoprobes based on functional components with optimized properties: bright photoluminescence of CdSe/ZnS (core/shell) QDs, a compact and effective antitumor agent (an acridine derivative), and direct conjugation of the components via electrostatic interaction, which provides a final hydrodynamic diameter of nanoprobes smaller than 15 nm. Due to the possibility of conjugating various biomolecules with hydroxyl and carboxyl moieties to QDs, the method represents a versatile approach to the biomarker-recognizing molecule imaging of the delivery of the active substance as part of compact nanoprobes.

19.
Nanomaterials (Basel) ; 11(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443846

RESUMO

Quantum dots (QDs) are promising candidates for producing bright, color-pure, cost-efficient, and long-lasting QD-based light-emitting diodes (QDLEDs). However, one of the significant problems in achieving high efficiency of QDLEDs is the imbalance between the rates of charge-carrier injection into the emissive QD layer and their transport through the device components. Here we investigated the effect of the parameters of the deposition of a poly (methyl methacrylate) (PMMA) electron-blocking layer (EBL), such as PMMA solution concentration, on the characteristics of EBL-enhanced QDLEDs. A series of devices was fabricated with the PMMA layer formed from acetone solutions with concentrations ranging from 0.05 to 1.2 mg/mL. The addition of the PMMA layer allowed for an increase of the maximum luminance of QDLED by a factor of four compared to the control device without EBL, that is, to 18,671 cd/m2, with the current efficiency increased by an order of magnitude and the turn-on voltage decreased by ~1 V. At the same time, we have demonstrated that each particular QDLED characteristic has a maximum at a specific PMMA layer thickness; therefore, variation of the EBL deposition conditions could serve as an additional parameter space when other QDLED optimization approaches are being developed or implied in future solid-state lighting and display devices.

20.
Methods Mol Biol ; 2350: 105-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331282

RESUMO

Early detection of malignant tumors, micrometastases, and disseminated tumor cells is one of the effective way of fighting cancer. Among the many existing imaging methods like computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), optical imaging with fluorescent probes is one of the most promising alternatives because it is fast, inexpensive, safe, sensitive, and specific. However, traditional fluorescent probes, based on organic fluorescent dyes, suffer from the low signal-to-noise ratio. Furthermore, conventional organic fluorescent dyes are unsuitable for deep tissue imaging because of the strong visible light absorption by biological tissues. The use of fluorescent semiconductor nanocrystals, or quantum dots (QDs), may overcome this limitation due to their large multiphoton cross section, which ensures efficient imaging of thick tissue sections inaccessible with conventional fluorescent probes. Moreover, the lower photobleaching and higher brightness of fluorescence signals from QDs ensures a much better discrimination of positive signals from the background. The use of fluorescent nanoprobes based on QDs conjugated to uniformly oriented high-affinity single-domain antibodies (sdAbs) may significantly increase the sensitivity and specificity due to better recognition of analytes and deeper penetration into tissues due to small size of such nanoprobes.Here, we describe a protocol for the fabrication of nanoprobes based on sdAbs and QDs, preparation of experimental xenograft mouse models for quality control, and multiphoton imaging of deep-tissue solid tumors, micrometastases, and disseminated tumor cells.


Assuntos
Imunofluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Pontos Quânticos , Anticorpos de Domínio Único , Linhagem Celular Tumoral , Imunofluorescência/normas , Humanos , Imunoconjugados/química , Imuno-Histoquímica/métodos , Sondas Moleculares , Imagem Multimodal/métodos , Nanopartículas , Micrometástase de Neoplasia , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...