Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 14(1): 127-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186949

RESUMO

Regulating blood glucose level (BGL) for type-1 diabetic patient (T1DP) accurately is very important issue, an uncontrolled BGL outside the standard safe range between 70 and 180 mg/dl results in dire consequences for health and can significantly increase the chance of death. So the purpose of this study is to design an optimized controller that infuses appropriate amounts of exogenous insulin into the blood stream of T1DP proportional to the amount of obtained glucose from food. The nonlinear extended Bergman minimal model is used to present glucose-insulin physiological system, an interval type-2 fuzzy logic controller (IT2FLC) is utilized to infuse the proper amount of exogenous insulin. Superiority of IT2FLC in minimizing the effect of uncertainties in the system depends primarily on the best choice of footprint of uncertainty (FOU) of IT2FLC. So a comparison includes four different optimization methods for tuning FOU including hybrid grey wolf optimizer-cuckoo search (GWOCS) and fuzzy logic controller (FLC) method is constructed to select the best controller approach. The effectiveness of the proposed controller was evaluated under six different scenarios of T1DP using Matlab/Simulink platform. A 24-h scenario close to real for 100 virtual T1DPs subjected to parametric uncertainty, uncertain meal disturbance and random initial condition showed that IT2FLC accurately regulate BGL for all T1DPs within the standard safe range. The results indicated that IT2FLC using GWOCS can prevent side effect of treatment with blood-sugar-lowering medication. Also stability analysis for the system indicated that the system operates within the stability region of nonlinear system.

2.
Sci Rep ; 13(1): 14508, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667042

RESUMO

Due to advancements in existing Internet of Medical Things (IoMT) systems and devices, the blood glucose level (BGL) for type-1 diabetic patients (T1DPs) is effectively and continually monitored and controlled by Artificial Pancreas. Because the regulation of BGL is a very complex process, many efforts have been conducted to design a powerful and effective controller for the exogenous insulin infusion system. The main objective of this study is to propose an optimized interval type-2 fuzzy (IT2F) based controller of artificial pancreas for regulation BGL of T1DP based on IoMT. The proposed controller should avoid the risk of hyperglycemia and hypoglycemia situations that T1DP faces during the infusion of exogenous insulin. The main contribution of this work is using meta-heuristic method called grey wolf optimizer (GWO) to tune the footprint of uncertainty for IT2F's membership functions to inject the proper dose of insulin under different conditions. The nonlinear extended Bergman minimal model (EBMM) with uncertainty is used to represent the blood glucose regulation and represent the dynamics of meal disturbance in T1DP. The effectiveness and the performance of the proposed controller are investigated using MATLAB/Simulink platform. Simulation results show that the proposed controller can avoid both severe hypoglycemia and hyperglycemia for nominal parameters of the model, in addition to model under the presence of both parametric uncertainty and uncertain meal disturbance.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Hipoglicemia , Humanos , Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...