Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1450, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365786

RESUMO

High-entropy alloy (HEA) nanoparticles (NPs) exhibit unusual combinations of functional properties. However, their scalable synthesis remains a significant challenge requiring extreme fabrication conditions. Metal salts are often employed as precursors because of their low decomposition temperatures, yet contain potential impurities. Here, we propose an ultrafast (< 100 ms), one-step method that enables the continuous synthesis of HEA NPs directly from elemental metal powders via in-flight alloying. A high-temperature plasma jet ( > 5000 K) is employed for rapid heating/cooling (103 - 105 K s-1), and demonstrates the synthesis of CrFeCoNiMo HEA NPs ( ~ 50 nm) at a high rate approaching 35 g h-1 with a conversion efficiency of 42%. Our thermofluid simulation reveals that the properties of HEA NPs can be tailored by the plasma gas which affects the thermal history of NPs. The HEA NPs demonstrate an excellent light absorption of > 96% over a wide spectrum, representing great potential for photothermal conversion of solar energy at large scales. Our work shows that the thermal plasma process developed could provide a promising route towards industrial scale production of HEA NPs.

2.
Materials (Basel) ; 15(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35207881

RESUMO

The pressure to use sustainable materials and adopt practices reducing the carbon footprint of the construction industry has risen. Such materials include recycled concrete aggregates (RCA) made from waste concrete. However, concrete made with RCA often presents poor fresh and hardened properties along with a decrease in its durability performance, especially when using its fine fraction (i.e., FRCA). Most studies involving FRCA use direct replacement methods (DRM) to proportion concrete although other techniques are available such as the Equivalent Volume (EV) and Particle Packing Models (PPMs); yet their impact on the durability performance, especially its performance against freezing and thawing (F/T), remains unknown. This work, therefore, appraises the F/T resistance of FRCA mixtures proportioned through various mix proportioning techniques (i.e., DRM, EV and PPMs), produced with distinct crushing processes (i.e., crusher's fines vs. finely ground). The results show that the mix design technique has a significant influence on the FRCA mixture's F/T resistance where PPM-proportioned mixtures demonstrate the best overall performance, exceeding the specified requirements while DRM-proportioned mixtures failed F/T resistance requirements. Moreover, the crushing process plays an important role in the recycled mixtures' cracking behavior under F/T cycles, where less processing leads to fewer cracks while remaining the most sustainable option overall.

3.
Materials (Basel) ; 15(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207896

RESUMO

Most of the previous research on recycled concrete aggregates (RCA) has focused on coarse RCA (CRCA), while much less has been accomplished on the use of fine RCA particles (FRCA). Furthermore, most RCA research disregards its unique microstructure, and thus the inferior performance of concrete incorporating RCA is often reported in the fresh and hardened states. To improve the overall behaviour of RCA concrete advanced mix design techniques such as equivalent volume (EV) or particle packing models (PPMs) may be used. However, the efficiency of these procedures to proportion eco-efficient FRCA concrete still requires further investigation. This work evaluates the overall fresh (i.e., slump and rheological characterization) and hardened states (i.e., non-destructive tests, compressive strength and microscopy) performance of sustainable FRCA mixtures proportioned through distinct techniques (i.e., direct replacement, EV and PPMs) and incorporating different types of aggregates (i.e., natural and manufactured sand) and manufacturing processes (i.e., crusher fines and fully ground). Results demonstrate that the aggregate type and crushing process may influence the FRCA particles' features. Yet, the use of advanced mix design techniques, particularly PPMs, may provide FRCA mixes with quite suitable performance in the fresh (i.e., 49% lower yield stress) and hardened states (i.e., 53% higher compressive strength) along with a low carbon footprint.

4.
ACS Omega ; 6(4): 2644-2654, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553882

RESUMO

There is an urgent need to improve the energy density of Li-ion batteries to enable mass-market penetration of electric vehicles, grid-scale energy storage, and next-generation consumer electronics. Silicon-graphite composites are currently the most plausible anode material to overcome the capacity limit of graphite or poor cycling performance of silicon. One serious and unrecognized limitation to the use of the composite as an anode is the incompatibility of hydrophobic (natural) graphite with the hydrophilic Si, which adversely affects battery performance. Herein, we report a novel, practical approach to modify the graphite resulting in the formation of a hard carbon coating and graphene sheets that give rise to higher compatibility with Si nanoparticles in the composite. Electrochemical and battery testing of the composite (10 wt % Si) anode shows higher reversible capacity (10% at C/12 and 20% at C/2) than the composite with unmodified graphite reaching ∼600 mAh/g with 95% retention after 100 cycles. The enhanced battery performance is explained by the uniform distribution of Si nanoparticles at the modified graphite surface due to the presence of graphene conductive networks and a thin, oxygen-rich, amorphous carbon layer on the surface of graphite particles, as evidenced by transmission electron microscopy (TEM) images and X-ray photoelectron spectra (XPS). This work provides a new approach to prepare graphite compatible materials that can work with hydrophilic components other than silicon for various applications other than batteries.

5.
Saudi Pharm J ; 26(5): 651-655, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29991909

RESUMO

The CYP2B6 is one of the members of the cytochrome P450 superfamily. This enzyme metabolizes a number of currently prescribed drugs and different compounds. In light of clinical significance of the CYP2B6∗6 variant of the CYP2B6 gene, the aim of this study was to investigate the distribution of one of the gene polymorphisms, namely, the 516G/T in the Ukrainian population. The study cohort consisted of 102 healthy Ukrainian adults (48 males, 54 females). Genotyping of the CYP2B6 (rs3745274) polymorphism in the study subjects was carried out using a polymerase chain reaction. The following distribution of 516G/T CYP2B6 genotypes in the Ukrainian cohort was identified: GG - in 56%, GT - in 37% and TT - in 7%. The 516G/T allele frequency of the CYP2B6 gene in population was pG = 0.75 and qT = 0.25, respectively. The population-based sequences were analyzed by the Hardy-Weinberg method. The genetic polymorphism revealed in the Ukrainian population suggests the 516G/T polymorphism of the CYP2B6 genetic testing when prescribing the drugs that are substrates of this gene.

6.
J Colloid Interface Sci ; 367(1): 485-93, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22074692

RESUMO

CoCl(2) containing honeycomb patterned films were prepared from cellulose acetate (CA)/CoCl(2)/acetone solutions by the breath figure method in a wide range of humidities. Size and pore regularity depend on the CA/CoCl(2) molar ratio and humidity. When replacing CoCl(2) with Co(NO(3))(2) or CoBr(2), no formation of ordered porosity in the cellulose acetate films is observed. According to data from scanning electron microscopy (SEM), Energy Dispersive X-ray Microanalysis (EDX), X-ray Diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, the key role in the formation of honeycomb structures can be attributed to the physical and chemical properties of CoCl(2) - hygroscopicity, low interaction with CA, and extraction from CA/CoCl(2)/acetone solution by water droplets condensed on the surface of the CA/CoCl(2) solution. Obtained films are prospective for using in catalysis, hydrogen fuel cells, and optical sensing materials.


Assuntos
Celulose/análogos & derivados , Cobalto/química , Nanoestruturas/ultraestrutura , Celulose/química , Umidade , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...